cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257217 A257213 - A003059, where A257213(n) = min{d>0 | floor(n/d) = floor(n/(d+1))}, A003059(n) = ceiling(sqrt(n)).

Original entry on oeis.org

1, 1, 1, 0, 1, 0, 1, 1, 0, 2, 0, 0, 1, 1, 1, 0, 2, 1, 0, 0, 2, 1, 1, 1, 0, 2, 1, 1, 0, 0, 2, 2, 1, 1, 1, 0, 2, 1, 1, 1, 0, 0, 2, 2, 2, 1, 1, 1, 0, 3, 1, 1, 1, 1, 0, 0, 2, 2, 2, 2, 1, 1, 1, 0, 3, 2, 1, 1, 1, 1, 0, 0, 2, 2, 2, 2, 2, 1, 1, 1, 0, 3, 2, 2, 1, 1
Offset: 0

Views

Author

M. F. Hasler, Apr 18 2015

Keywords

Comments

One has a(n) <= a(n-1) except for n = k^2. The positive jumps occur exactly at the squares, cf. formula.

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{d, k}, Reap@ For[k = 0, k <= n, k++, d = 1; While[Floor[k/d] != Floor[k/(d + 1)], d++]; Sow[d - Ceiling[Sqrt@ k]]] // Flatten // Rest]; f@ 85 (* Michael De Vlieger, Apr 18 2015 *)
  • PARI
    A257217(n)=A257213(n)-A003059(n)

Formula

a(k^2-1) = 0 for k > 1. Proof: For n = k^2-1 = (k-1)(k+1), floor(n/k) = k-1 = n/(k+1) but n/(k-1) = k+1, thus A257213(n) = k = ceiling(sqrt(n)).
A257213(n) >= floor(sqrt(n))+1 = A257213(n+1) >= A257213(n) = ceiling(sqrt(n)), with strict inequality (in the second relation) when n is a square. Therefore a(n) >= 1 for all n = k^2.
a(k^2) >= d when k > d(d-1). Proof: This follows from k^2/(k+d) = k-d+d^2/(k+d), which shows that a(k) >= d when k > d(d-1).