cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257244 First differences of A256393: a(n) = A256393(n+1) - A256393(n).

This page as a plain text file.
%I A257244 #13 May 06 2015 09:26:34
%S A257244 2,2,3,3,3,3,3,3,3,3,5,5,5,3,3,3,3,3,5,5,7,7,7,7,7,3,3,3,19,7,7,3,5,5,
%T A257244 5,3,7,5,5,5,19,11,11,3,13,13,13,3,23,13,13,5,11,11,11,3,61,7,31,3,13,
%U A257244 13,19,3,43,13,13,3,7,5,5,5,61,11,31,23,23,3,127,7,7,3,151,7,19,3,181,7,13,3,43,31,31
%N A257244 First differences of A256393: a(n) = A256393(n+1) - A256393(n).
%C A257244 Sequence gives the differences between the successive terms of A256393, each difference being equal to their unique shared prime factor.
%H A257244 Antti Karttunen, <a href="/A257244/b257244.txt">Table of n, a(n) for n = 1..4095</a>
%F A257244 a(n) = A256393(n+1) - A256393(n).
%F A257244 a(n) = gcd(A256393(n+1), A256393(n)).
%t A257244 f[n_] := Block[{pf = First /@ FactorInteger@ n},
%t A257244   If[EvenQ@ n, Max@ pf, Min@ pf]]; s = {2}; lmt = 94; For[k = 2,
%t A257244 k <= lmt, k++, AppendTo[s, s[[k - 1]] + f@ s[[k - 1]]]]; Abs[
%t A257244 Subtract @@@ Partition[s, 2, 1]] (* _Michael De Vlieger_, Apr 19 2015 *)
%o A257244 (Scheme, two alternatives)
%o A257244 (define (A257244 n) (- (A256393 (+ n 1)) (A256393 n)))
%o A257244 (define (A257244 n) (gcd (A256393 (+ n 1)) (A256393 n)))
%o A257244 (Haskell)
%o A257244 a257244 n = a257244_list !! (n-1)
%o A257244 a257244_list = zipWith gcd a256393_list $ tail a256393_list
%o A257244 -- _Reinhard Zumkeller_, May 06 2015
%Y A257244 Cf. A257245, A257246 (bisections), A257247 (positions where they coincide).
%Y A257244 Cf. A256393.
%K A257244 nonn
%O A257244 1,1
%A A257244 _Antti Karttunen_, Apr 19 2015