cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257253 Square array A(row,col) = (1/2) * (A083221(row,col+1) - A083221(row,col)): half of the first differences of each row of array constructed from the sieve of Eratosthenes.

This page as a plain text file.
%I A257253 #12 Apr 30 2015 21:44:24
%S A257253 1,1,3,1,3,10,1,3,5,21,1,3,10,14,55,1,3,5,7,11,78,1,3,10,14,22,26,136,
%T A257253 1,3,5,7,11,13,17,171,1,3,10,14,22,26,34,38,253,1,3,5,21,33,39,51,57,
%U A257253 69,406,1,3,10,7,11,13,17,19,23,29,465
%N A257253 Square array A(row,col) = (1/2) * (A083221(row,col+1) - A083221(row,col)): half of the first differences of each row of array constructed from the sieve of Eratosthenes.
%C A257253 The array A(row,col) is read by its downwards antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...
%H A257253 Antti Karttunen, <a href="/A257253/b257253.txt">Table of n, a(n) for n = 1..3321; the first 81 antidiagonals of the array</a>
%F A257253 A(row,col) = (1/2) * (A083221(row,col+1) - A083221(row,col)).
%F A257253 A(row,col) = A257251(row,col)/2.
%e A257253 The top left corner of the array:
%e A257253      1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1
%e A257253      3,   3,   3,   3,   3,   3,   3,   3,   3,   3,   3,   3,   3,   3,   3
%e A257253     10,   5,  10,   5,  10,   5,  10,   5,  10,   5,  10,   5,  10,   5,  10
%e A257253     21,  14,   7,  14,   7,  14,  21,   7,  21,  14,   7,  14,   7,  14,  21
%e A257253     55,  11,  22,  11,  22,  33,  11,  33,  22,  11,  22,  33,  33,  11,  33
%e A257253     78,  26,  13,  26,  39,  13,  39,  26,  13,  26,  39,  39,  13,  39,  26
%e A257253    136,  17,  34,  51,  17,  51,  34,  17,  34,  51,  51,  17,  51,  34,  17
%e A257253    171,  38,  57,  19,  57,  38,  19,  38,  57,  57,  19,  57,  38,  19,  57
%e A257253    253,  69,  23,  69,  46,  23,  46,  69,  69,  23,  69,  46,  23,  69,  46
%e A257253    406,  29,  87,  58,  29,  58,  87,  87,  29,  87,  58,  29,  87,  58,  87
%e A257253    465,  93,  62,  31,  62,  93,  93,  31,  93,  62,  31,  93,  62,  93, 124
%e A257253    666,  74,  37,  74, 111, 111,  37, 111,  74,  37, 111,  74, 111, 148,  74
%e A257253    820,  41,  82, 123, 123,  41, 123,  82,  41, 123,  82, 123, 164,  82,  41
%e A257253    903,  86, 129, 129,  43, 129,  86,  43, 129,  86, 129, 172,  86,  43,  86
%e A257253   1081, 141, 141,  47, 141,  94,  47, 141,  94, 141, 188,  94,  47,  94,  47
%e A257253   1378, 159,  53, 159, 106,  53, 159, 106, 159, 212, 106,  53, 106,  53, 106
%e A257253   ...
%o A257253 (Scheme)
%o A257253 (define (A257253 n) (A257253bi (A002260 n) (A004736 n)))
%o A257253 (define (A257253bi row col) (* (/ 1 2) (- (A083221bi row (+ 1 col)) (A083221bi row col)))) ;; Code for A083221bi given in A083221.
%Y A257253 Transpose: A257254.
%Y A257253 Cf. A083221, A257251 (same array but with terms multiplied by 2).
%Y A257253 Column 1: A008837.
%Y A257253 Row 4: (7/2) * A145011.
%K A257253 nonn,tabl
%O A257253 1,3
%A A257253 _Antti Karttunen_, Apr 29 2015