A257274 Numbers whose square can be written as sum of at least 3 consecutive triangular numbers (A000217).
8, 10, 19, 26, 44, 58, 79, 84, 91, 105, 111, 121, 135, 140, 154, 172, 184, 188, 195, 203, 208, 212, 217, 222, 230, 240, 246, 265, 276, 286, 292, 316, 322, 329, 338, 364, 390, 426, 429, 462, 490, 498, 506, 548, 550, 605, 704, 714, 715, 763, 770, 780, 782, 807
Offset: 1
Keywords
Examples
8^2 = T(5)+T(6)+T(7), 10^2 = T(5)+T(6)+T(7)+T(8), 19^2 = T(14)+T(15)+T(16), 26^2 = T(3)+...+T(15), 44^2 = T(13)+...+T(23), ...
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
PARI
{a=[];(S(n)=binomial(n+2,3)); for(n=1,999,for(k=1,n-3,issquare(S(n)-S(k))&&a=concat(a,sqrtint(S(n)-S(k))))); Set(a)[1..50]}
Extensions
a(14), a(43)-a(54) from Chai Wah Wu, Jan 20 2016
Comments