cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257285 a(n) = 4*5^n - 3*4^n.

This page as a plain text file.
%I A257285 #16 Nov 15 2023 19:07:10
%S A257285 1,8,52,308,1732,9428,50212,263348,1365892,7026068,35916772,182729588,
%T A257285 926230852,4681485908,23608756132,118849087028,597466660612,
%U A257285 3000218204948,15052630632292,75469311591668,378171191679172,1894154493279188,9483966605929252
%N A257285 a(n) = 4*5^n - 3*4^n.
%C A257285 First differences of 5^n - 4^n = A005060.
%C A257285 a(n-1) is the number of numbers with n digits having the largest digit equal to 4. Note that this is independent of the base b>4. Equivalently, number of n-letter words over a 5-letter alphabet {a,b,c,d,e}, which must not start with the first letter of the alphabet, and in which the last letter of the alphabet must appear.
%H A257285 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (9,-20).
%F A257285 From _Vincenzo Librandi_, May 04 2015: (Start)
%F A257285 G.f.: (1-x)/((1-4*x)*(1-5*x)).
%F A257285 a(n) = 9*a(n-1) - 20*a(n-2). - (End)
%F A257285 E.g.f.: exp(4*x)*(4*exp(x) - 3). - _Stefano Spezia_, Nov 15 2023
%t A257285 Table[4 5^n - 3 4^n, {n, 0, 30}] (* _Vincenzo Librandi_, May 04 2015 *)
%o A257285 (PARI) a(n)=4*5^n-3*4^n
%o A257285 (Magma) [4*5^n-3*4^n: n in [0..30]]; // _Vincenzo Librandi_, May 04 2015
%Y A257285 Cf. A005060. See also A000225, A027649, A255463, A257286 - A257289 and A088924.
%K A257285 nonn,easy
%O A257285 0,2
%A A257285 _M. F. Hasler_, May 03 2015