This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257290 #27 Feb 14 2017 22:11:30 %S A257290 1,0,1,3,11,39,140,504,1823,6621,24144,88380,324699,1197045,4427565, %T A257290 16427385,61129025,228103185,853399640,3200710680,12032399045, %U A257290 45332769075,171148151095,647412581643,2453529142471,9314461044639,35419207688050,134894888442714,514506926871927 %N A257290 Number of 3-Motzkin paths of length n with no level steps at even level. %H A257290 G. C. Greubel, <a href="/A257290/b257290.txt">Table of n, a(n) for n = 0..1000</a> %F A257290 a(n) = Sum_{i=0..floor(n/2)} 3^(n-2i)*C(i)*binomial(n-i-1,n), where C(i) is the n-th Catalan number A000108. %F A257290 G.f.: (1 - 3*z - sqrt((1-3*z)*(1-3*z-4*z^2)))/(2*z^2). %F A257290 a(n) ~ sqrt(5) * 4^n / (sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Apr 21 2015 %F A257290 Conjecture: (n+2)*a(n) +3*(-2*n-1)*a(n-1) +5*(n-1)*a(n-2) +6*(2*n-5)*a(n-3)=0. - _R. J. Mathar_, Sep 24 2016 %e A257290 For n=3 we have 3 paths: UH1D, UH2D, UH3D. %t A257290 CoefficientList[Series[(1-3*x-Sqrt[(1-3*x)*(1-3*x-4*x^2)])/(2*x^2), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Apr 21 2015 *) %o A257290 (PARI) x='x+O('x^50); Vec((1-3*x-sqrt((1-3*x)*(1-3*x-4*x^2)))/(2*x^2)) \\ _G. C. Greubel_, Feb 14 2017 %Y A257290 Cf. A090345, A025266. %K A257290 nonn %O A257290 0,4 %A A257290 _José Luis Ramírez Ramírez_, Apr 20 2015