This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257308 #30 Apr 11 2022 22:04:42 %S A257308 13,47710850533373130107,347709450746519734877,695874886175252911063, %T A257308 1099638576123052218257,1169914227530138703617,1522014304823128379267, %U A257308 1567582627835236839763,1620784518619319025977,1750052554011927712483,2257588388550898970503,2639154464612254121537,3259125690557440336637,3789227751026345304613,4654682384109074514133,5022156579757255625623,9042634271485192050677,9239395687646993061197,13599236099159166553033 %N A257308 Initial members of prime 16-tuplets. %H A257308 Tim Johannes Ohrtmann, <a href="/A257308/b257308.txt">Table of n, a(n) for n = 1..66</a> %H A257308 Tony Forbes <a href="http://anthony.d.forbes.googlepages.com/ktuplets.htm">k-tuplets</a> %Y A257308 Initial members of all of the first prime k-tuplets: %Y A257308 twin primes: A001359. %Y A257308 prime triples: A007529 out of A022004, A022005. %Y A257308 prime quadruplets: A007530. %Y A257308 prime 5-tuples: A086140 out of A022007, A022006. %Y A257308 prime sextuplets: A022008. %Y A257308 prime septuplets: A257124 out of A022009, A022010. %Y A257308 prime octuplets: A065706 out of A022011, A022012, A022013. %Y A257308 prime nonuplets: A257125 out of A022547, A022548, A022545, A022546. %Y A257308 prime decaplets: A257127 out of A027569, A027570. %Y A257308 prime 11-tuplets: A257129 out of A213646, A213647. %Y A257308 prime 12-tuplets: A257131 out of A213601, A213645. %Y A257308 prime 13-tuplets: A257135 out of A214947, A257137, A257138, A257139, A257140, A257141. %Y A257308 prime 14-tuplets: A257166 out of A257167, A257168. %Y A257308 prime 15-tuplets: A257169 out of A257304, A257305, A257306, A257307. %Y A257308 prime 16-tuplets: this sequence out of A257369, A257370. %Y A257308 prime 17-tuplets: A257373 out of A257374, A257375, A257376, A257377. %K A257308 nonn %O A257308 1,1 %A A257308 _Tim Johannes Ohrtmann_, Apr 21 2015