This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257309 #45 Jun 24 2024 09:18:39 %S A257309 0,1,4,16,27,256,3125,46656,65536,823543,16777216,387420489, %T A257309 10000000000,285311670611,7625597484987,8916100448256,302875106592253, %U A257309 11112006825558016,437893890380859375,18446744073709551616,827240261886336764177,39346408075296537575424,1978419655660313589123979,104857600000000000000000000 %N A257309 Perfect hyper-4 powers: a^^b, where b <> 1. %C A257309 a^^b is the right associative power tower a^a^...^a^a of height b. a^^-1= 0 and a^^0 = 1. We exclude b=1 because otherwise all natural numbers would be in the sequence. %e A257309 Numbers written as power towers include: %e A257309 5^^2 = 5^5 = 3125; %e A257309 3^^3 = 3^3^3 = 3^27 = 7625597484987; %e A257309 2^^4 = 2^2^2^2 = 2^2^4 = 2^16 = 65536; %e A257309 0^^5 = 0^0^0^0^0 = 0^0^0^1 = 0^0^0 = 0^1 = 0; %p A257309 Digits := 200 ; %p A257309 tpow := proc(a,b,logamax) %p A257309 option remember; %p A257309 if b = 0 then %p A257309 1; %p A257309 elif b = 1 then %p A257309 a; %p A257309 elif b = 2 then %p A257309 a^a; %p A257309 else %p A257309 # log a^procname(a,b-1) = procnmae(a,b-1)*loga %p A257309 if evalf(procname(a,b-1,logamax)*log(a)) > evalf(logamax) then %p A257309 return -1 ; %p A257309 elif procname(a,b-1,logamax) < 0 then %p A257309 return -1 ; %p A257309 else %p A257309 a^procname(a,b-1,logamax) ; %p A257309 end if; %p A257309 end if; %p A257309 end proc: %p A257309 A257309 := proc(amax) %p A257309 local a,n,m,t, logamax; %p A257309 a := {0,1} ; %p A257309 logamax := evalf(log(amax)) ; %p A257309 for n from 2 to amax do %p A257309 if n^n > amax then %p A257309 break; %p A257309 end if; %p A257309 for m from 2 do %p A257309 t := tpow(n,m,logamax) ; %p A257309 if t > amax or t < 0 then %p A257309 break; %p A257309 elif t <= amax and t > 0 then %p A257309 a := a union {t} ; %p A257309 end if; %p A257309 end do: %p A257309 end do: %p A257309 sort(convert(a,list)) ; %p A257309 end proc: %p A257309 A257309(10^30) ; # _R. J. Mathar_, Jun 24 2024 %Y A257309 Cf. A004231, A002488. %K A257309 nonn %O A257309 1,3 %A A257309 _Natan Arie Consigli_, May 07 2015