This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257316 #38 Jun 03 2024 09:44:49 %S A257316 3505,990,4613,2040 %N A257316 Smallest magic constant of ultramagic squares of order n composed of distinct prime numbers. %C A257316 A magic square is associative if the sum of any two elements symmetric about its center is the same. A magic square is pandiagonal if the sum of the numbers in any broken diagonal equals the magic constant. A magic square is ultramagic if it is associative and pandiagonal. %C A257316 Ultramagic squares exist for orders n>=5. %C A257316 The following bounds for the next terms are known: 12249<=a(9)<=13059, 4200<=a(10)<=46150, a(11)>=26521, a(12)>=8820, a(13)>=49439, a(14)>=16170, a(15)>=74595, a(16)>=21840. %H A257316 Discussion at the scientific forum dxdy.ru, <a href="http://dxdy.ru/post1002869.html#p1002869">Devilish magic squares of primes</a> (in Russian) %H A257316 Wikipedia, <a href="http://en.wikipedia.org/wiki/Magic_square">Magic Square</a> %e A257316 a(6)=990 corresponds to the following ultramagic square found by _Max Alekseyev_: %e A257316 103 59 163 233 139 293 %e A257316 229 257 307 131 13 53 %e A257316 283 17 67 173 181 269 %e A257316 61 149 157 263 313 47 %e A257316 277 317 199 23 73 101 %e A257316 37 191 97 167 271 227 %e A257316 a(7)=4613 corresponds to the following ultramagic square found by _Natalia Makarova_: %e A257316 227 617 677 431 1217 1307 137 %e A257316 1259 827 1061 509 521 167 269 %e A257316 347 929 1187 17 557 719 857 %e A257316 89 479 29 659 1289 839 1229 %e A257316 461 599 761 1301 131 389 971 %e A257316 1049 1151 797 809 257 491 59 %e A257316 1181 11 101 887 641 701 1091 %e A257316 a(8)=2040 corresponds to the following ultramagic square found by _Natalia Makarova_: %e A257316 241 199 409 467 47 79 359 239 %e A257316 421 137 7 53 487 179 317 439 %e A257316 31 281 347 353 227 277 127 397 %e A257316 449 197 109 379 491 337 11 67 %e A257316 443 499 173 19 131 401 313 61 %e A257316 113 383 233 283 157 163 229 479 %e A257316 71 193 331 23 457 503 373 89 %e A257316 271 151 431 463 43 101 311 269 %Y A257316 Cf. A006052, A081262, A081263. %K A257316 nonn,more %O A257316 5,1 %A A257316 _Natalia Makarova_, Apr 20 2015