A257317 Number of unordered ways to write n as the sum of two distinct elements of the set {floor(x/3): 3*x-1 and 3*x+1 are twin prime} one of which is even.
1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 3, 3, 5, 3, 3, 3, 5, 4, 3, 3, 5, 3, 5, 4, 3, 3, 6, 5, 2, 2, 5, 5, 2, 1, 3, 5, 4, 3, 4, 5, 5, 3, 3, 4, 3, 3, 3, 3, 5, 4, 3, 2, 4, 4, 2, 3, 4, 5, 6, 4, 5, 4, 5, 4, 3, 2, 5, 3, 6, 3, 3, 2, 4, 3, 3, 2, 2, 3, 5, 2, 4, 4, 7, 4, 4, 4, 6, 4, 6, 3
Offset: 1
Keywords
Examples
a(4) = 1 since 4 = 0 + 4 = floor(2/3) + floor(14/3) with 0 or 4 even, and {3*2-1,3*2+1} = {5,7} and {3*14-1,3*14+1} = {41,43} twin prime pairs. a(108) = 1 since 108 = 16 + 92 = floor(50/3) + floor(276/3) with 16 or 92 even, and {3*50-1,3*50+1} = {149,151} and {3*276-1,3*276+1} = {827,829} twin prime pairs.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Natural numbers represented by floor(x^2/a) + floor(y^2/b) + floor(z^2/c), arXiv:1504.01608 [math.NT], 2015.
Programs
-
Mathematica
TQ[n_]:=PrimeQ[3n-1]&&PrimeQ[3n+1] PQ[n_]:=TQ[3*n]||TQ[3*n+1]||TQ[3n+2] Do[m=0;Do[If[Mod[x(n-x),2]==0&&PQ[x]&&PQ[n-x],m=m+1],{x,0,(n-1)/2}]; Print[n," ",m];Label[aa];Continue,{n,1,100}]
Comments