cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257393 Primes which are not the sum of two or more consecutive nonprime numbers.

This page as a plain text file.
%I A257393 #25 Apr 23 2015 09:49:38
%S A257393 2,3,7,13,47,61,73,107,167,179,313,347,421,479,719,863,1153,1213,1283,
%T A257393 1307,1523,3467,3733,4007,4621,4787,5087,5113,5413,7523,7703,9817,
%U A257393 10333,12347,12539,13381,17027,18553,19717,19813,23399,26003,31873,36097,38833
%N A257393 Primes which are not the sum of two or more consecutive nonprime numbers.
%C A257393 Numbers n such that A257392(n) = 0.
%H A257393 Robert Israel, <a href="/A257393/b257393.txt">Table of n, a(n) for n = 1..209</a>
%e A257393 2 and 3 are in this sequence because nonnegative nonprime(1) + nonnegative nonprime(2) = 0 + 1 = 1 < 2 and nonnegative nonprime(2) + nonnegative nonprime(3) =  1 + 4 = 5 > 3 where 2, 3 are primes.
%p A257393 N:= 5000: # to get all terms <= N
%p A257393 Primes:= select(isprime,{2,seq(2*i+1, i=1..floor((N-1)/2))}):
%p A257393 Nonprimes:= sort(convert({$1..N} minus Primes, list)):
%p A257393 nnp:= nops(Nonprimes):
%p A257393 PSums:= [0,op(ListTools[PartialSums](Nonprimes))]:
%p A257393 A:= Primes:
%p A257393 mA:= max(A):
%p A257393 for i from 1 to nnp do
%p A257393   for j from i+2 to nnp+1 while PSums[j] - PSums[i] <= mA do od;
%p A257393   A:= A minus {seq(PSums[k]-PSums[i],k=i+2..j-1)};
%p A257393 od od:
%p A257393 A;
%p A257393 # if using Maple 11 or earlier, uncomment the next line
%p A257393 # sort(convert(A,list));  # _Robert Israel_, Apr 21 2015
%t A257393 lim = 1000; s = {1}~Join~Select[Range@lim, CompositeQ]; Complement[Prime@ Range[PrimePi@ lim], DeleteDuplicates@ Sort@ Flatten[Plus @@@ Partition[s, #, 1] & /@ Range[lim - PrimePi@ lim]]] (* _Michael De Vlieger_, Apr 21 2015 *)
%Y A257393 Cf. A257392, A018252, A141468.
%K A257393 nonn,easy
%O A257393 1,1
%A A257393 _Juri-Stepan Gerasimov_, Apr 21 2015
%E A257393 a(7) - a(26) from _Michael De Vlieger_, Apr 21 2015
%E A257393 a(27) - a(45) from _Robert Israel_, Apr 21 2015