A257407 Decimal expansion of E(1/sqrt(2)) = 1.35064..., where E is the complete elliptic integral.
1, 3, 5, 0, 6, 4, 3, 8, 8, 1, 0, 4, 7, 6, 7, 5, 5, 0, 2, 5, 2, 0, 1, 7, 4, 7, 3, 5, 3, 3, 8, 7, 2, 5, 8, 4, 1, 3, 4, 9, 5, 2, 2, 3, 6, 6, 9, 2, 4, 3, 5, 4, 5, 4, 5, 3, 2, 3, 2, 5, 3, 7, 0, 8, 8, 5, 7, 8, 7, 7, 8, 9, 0, 8, 3, 6, 1, 2, 7, 3, 6, 9, 0, 4, 0, 2, 3, 6, 0, 7, 7, 8, 2, 2, 4, 9, 1, 5, 6, 3, 6, 0, 9, 9, 4, 7
Offset: 1
Examples
1.3506438810476755025201747353387258413495223669243545453232537...
References
- Jonathan Borwein, David H. Bailey, Mathematics by Experiment, 2nd Edition: Plausible Reasoning in the 21st Century, CRC Press (2008), p. 145.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Elliptic Integral of the Second Kind
- Wikipedia, Complete elliptic integral of the second kind
Programs
-
Maple
evalf(EllipticE(1/sqrt(2)),120); # Vaclav Kotesovec, Apr 22 2015
-
Mathematica
RealDigits[EllipticE[1/2], 10, 106] // First
Formula
Equals (4*B^2 + Pi)/(4*sqrt(2)*B), where B is the lemniscate constant A076390.
Equals Pi^(3/2)/Gamma(1/4)^2 + Gamma(1/4)^2/(8*Pi^(1/2)).
Equals (agm(1,sqrt(2))+Pi/agm(1,sqrt(2)))/sqrt(8) = (A053004+A062539)/A010466. - Gleb Koloskov, Jun 29 2021
Comments