A257434 Decimal expansion of the second smallest negative real root of the equation Gamma(x) = -1 (negated).
2, 7, 4, 7, 6, 8, 2, 6, 4, 6, 7, 2, 7, 4, 1, 2, 6, 0, 1, 3, 9, 1, 4, 8, 8, 4, 8, 2, 6, 9, 1, 4, 9, 9, 6, 9, 5, 8, 6, 1, 6, 3, 9, 3, 9, 5, 1, 3, 2, 3, 5, 5, 5, 1, 2, 0, 5, 2, 2, 9, 9, 1, 4, 8, 1, 1, 2, 5, 3, 9, 0, 6, 7, 6, 4, 5, 5, 5, 0, 0, 6, 0, 4, 1, 9, 9, 7, 8, 6, 6, 4, 0, 0, 6, 6, 4, 5, 8, 3, 7, 3
Offset: 1
Examples
-2.747682646727412601391488482691499695861639395132355512...
Links
- Philippe Flajolet, Stefan Gerhold and Bruno Salvy, Lindelöf Representations and (Non-)Holonomic Sequences, Electronic Journal of Combinatorics, vol 17(1):R3, 2010, p. 10.
- Eric Weisstein's MathWorld, Gamma Function
Programs
-
Mathematica
x2 = x /. FindRoot[Gamma[x] == -1, {x, -8/3}, WorkingPrecision -> 101]; RealDigits[x2] // First