This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257483 #20 Sep 08 2022 08:46:12 %S A257483 2,3,5,7,223,433,439,653,1087,1297,1301,1303,1733,1949,1951,2161,2377, %T A257483 2381,2383,2593,3457,3461,3463,3673,3677,3889,4111,4327,4759,4969, %U A257483 4973,5189,5407,5623,5839,6053,6269,6271,6481,6701,6703,6917,7129,7349,7351,7561 %N A257483 Primes p such that (p mod 8) = (p mod 27). %C A257483 a(n) is 2, 3 or of the form 216k + r where r is in {1, 5, 7} - _David A. Corneth_, May 26 2015 %H A257483 David A. Corneth, <a href="/A257483/b257483.txt">Table of n, a(n) for n = 1..10000</a> %F A257483 a(n) = A000040(A257482(n)). %F A257483 a(n) ~ 24n log n. - _Charles R Greathouse IV_, May 26 2015 %e A257483 223 == 7 (mod 8) == 7 (mod 27), 433 == 1 (mod 8) == 1 (mod 27). %p A257483 select(isprime,[2,3,seq(seq(216*k+r,r=[1,5,7]),k=0..1000)]); # _Robert Israel_, May 26 2015 %t A257483 Select[Prime@ Range@ 1000, Mod[#, 8] == Mod[#, 27] &] (* _Michael De Vlieger_, Apr 27 2015 *) %o A257483 (Magma) [p: p in PrimesUpTo(8000) | p mod 8 eq p mod 27]; // _Vincenzo Librandi_, Apr 28 2015 %o A257483 (PARI) is(n)=my(k=n%216); (k==1||k==5||k==7) && isprime(n) \\ _Charles R Greathouse IV_, May 26 2015 %Y A257483 Cf. A000040, A039706, A242125, A257482. %K A257483 nonn,easy %O A257483 1,1 %A A257483 _Zak Seidov_, Apr 26 2015