This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257490 #21 Aug 14 2019 16:09:03 %S A257490 1,1,3,1,15,15,1,28,35,210,105,1,45,210,630,1575,3150,945,1,66,495, %T A257490 462,1485,13860,5775,13860,51975,51975,10395,1,91,1001,3003,3003, %U A257490 45045,42042,105105,45045,630630,525525,315315,1576575,945945,135135 %N A257490 Irregular triangle read by rows in which the n-th row lists multinomials (A036040) for partitions of 2n which have only even parts in Abramowitz-Stegun ordering. %C A257490 The length of row n is given by A000041(n). %C A257490 Each entry in this irregular triangle is the quotient of the respective entries in A257468 and A096162, which is the multinomial called M_3 in Abramowitz-Stegun. %C A257490 Has the same structure as the triangles in A036036, A096162, A115621 and A257468. %H A257490 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy], pp. 831-832. %e A257490 Brackets group all partitions of the same length when there is more than one partition. %e A257490 n/m 1 2 3 4 5 %e A257490 1: 1 %e A257490 2: 1 3 %e A257490 3: 1 15 15 %e A257490 4: 1 [28 35] 210 105 %e A257490 5: 1 [45 210] [630 1575] 3150 945 %e A257490 ... %e A257490 n = 6: 1 [66 495 462] [1485 13860 5775] [13860 51975] 51975 0395 %e A257490 Replacing the bracketed numbers by their sums yields the triangle of A156289. %t A257490 (* triangle2574868[] and triangle096162[] are defined as functions triangle[] in the respective sequences A257468 and A096162 *) %t A257490 triangle[n_] := triangle257468[n]/triangle096162[n] %t A257490 a[n_] := Flatten[triangle[n]] %t A257490 a[7] (* data *) %Y A257490 Cf. A000041, A036040, A036036, A096162, A115621, A156289, A257468. %K A257490 nonn,tabf %O A257490 1,3 %A A257490 _Hartmut F. W. Hoft_, Apr 26 2015 %E A257490 Edited by _Wolfdieter Lang_, May 11 2015