A257497 Number of ordered ways to write n as the sum of a term of A257121 and a positive generalized pentagonal number.
1, 2, 2, 2, 3, 2, 3, 3, 3, 2, 2, 2, 5, 2, 3, 4, 4, 4, 2, 2, 3, 4, 6, 3, 2, 5, 7, 5, 2, 4, 3, 5, 4, 3, 4, 4, 6, 5, 3, 3, 5, 4, 5, 2, 2, 5, 4, 4, 2, 3, 5, 5, 6, 1, 4, 5, 4, 3, 3, 7, 4, 2, 5, 2, 5, 4, 2, 4, 3, 6, 4, 5, 9, 4, 3, 3, 4, 8, 2, 4, 5, 3, 5, 1, 5, 4, 1, 5, 3, 2, 4, 6, 6, 3, 5, 4, 6, 5, 5, 5
Offset: 1
Keywords
Examples
a(1439) = 1 since 1439 = 1424 + 15 = floor(4274/3) + (-3)*(3*(-3)-1)/2 with {3*4274-1,3*4274+1} = {12821,12823} a twin prime pair. a(2924) = 1 since 2924 = 2334 + 590 = floor(7004/3) + 20*(3*20-1)/2 with {3*7004-1, 3*7004+1} = {21011,21013} a twin prime pair.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..20000
- Zhi-Wei Sun, Natural numbers represented by floor(x^2/a) + floor(y^2/b) + floor(z^2/c), arXiv:1504.01608 [math.NT], 2015.
Programs
-
Mathematica
TQ[n_]:=PrimeQ[3n-1]&&PrimeQ[3n+1] PQ[n_]:=TQ[3*n]||TQ[3*n+1]||TQ[3n+2] SQ[n_]:=IntegerQ[Sqrt[24n+1]] Do[m=0;Do[If[PQ[x]&&SQ[n-x],m=m+1],{x,0,n-1}]; Print[n," ",m];Continue,{n,1,100}]
Comments