This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257499 #38 Dec 23 2024 14:53:44 %S A257499 1,7,5,3,15,9,27,19,23,13,11,59,35,31,17,107,75,91,51,39,21,43,235, %T A257499 139,123,67,47,25,427,299,363,203,155,83,55,29,171,939,555,491,267, %U A257499 187,99,63,33,1707,1195,1451,811,619,331,219,115,71,37 %N A257499 Array A read by upward antidiagonals in which the entry in row n and column k is defined by A(n,k) = (1 + 2^n*(6*k-3+2*(-1)^n))/3, n,k >= 1. %C A257499 Conjecture (now Lemma 1): The sequence is a permutation of the odd natural numbers. %C A257499 Proof from _Max Alekseyev_, Apr 29 2015: %C A257499 Reformulating the conjecture, we need to prove that for any integer m >= 0, the equation (1 + 2^n*(6*k - 3 + 2*(-1)^n))/3 = 2*m + 1 has a unique solution in integers n,k >= 1. Simplifying a bit, we have %C A257499 (1) 2^n*(6*k - 3 + 2*(-1)^n) = 6*m + 2. %C A257499 Since the factor (6*k - 3 + 2*(-1)^n) is odd, n is uniquely defined by n = A007814(6*m+2). Since 6*m+2 is even, we have n>=1. Dividing (1) by 2^n and rearranging, we further get %C A257499 (2) 6*k = (6*m + 2)/2^n + 3 - 2*(-1)^n. %C A257499 To prove the uniqueness of k, it remains to prove that the r.h.s of (2) is divisible by 6. To that end, the value of n implies that (6*m + 2)/2^n is odd; hence the r.h.s. of (2) is even and thus divisible by 2. Now, taking the r.h.s. modulo 3, we get %C A257499 (6*m + 2)/2^n + 3 - 2*(-1)^n == 2/(-1)^n + 0 - 2*(-1)^n == 0 (mod 3); %C A257499 so the r.h.s. of (2) is also divisible by 3. Therefore k is uniquely defined by %C A257499 k = ((6*m + 2)/2^n + 3 - 2*(-1)^n)/6. %C A257499 Finally, it is easy to see that (6*m + 2)/2^n >= 1, so k >= 1. %C A257499 QED %C A257499 Let v(y) denote the 2-adic valuation of y (see A007814). For x an odd natural number, define the function F(x) = (3*x+1)/2^v(3*x+1) (see A075677). Let F^(j)(x) denote k-fold iteration of F and defined by the recurrence F^(j)(x) = F(F^(j-1)(x)), j>0, with initial condition F^(0)(x) = x. %C A257499 Lemma 2: The following statements are equivalent. (i) Row n of A is the set of all odd m such that F^(n)(4*m-3) == 1 (mod 4); (ii) Row n of A is the set of all odd m such that v(1+F(4m-3)) = n. %H A257499 Max Alekseyev, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2015-May/014799.html">Proof of conjecture in A257499</a>, Sequence fanatics mailing list, April 29 and May 01, 2015 %e A257499 Array A begins: %e A257499 . 1 5 9 13 17 21 25 29 33 37 %e A257499 . 7 15 23 31 39 47 55 63 71 79 %e A257499 . 3 19 35 51 67 83 99 115 131 147 %e A257499 . 27 59 91 123 155 187 219 251 283 315 %e A257499 . 11 75 139 203 267 331 395 459 523 587 %e A257499 . 107 235 363 491 619 747 875 1003 1131 1259 %e A257499 . 43 299 555 811 1067 1323 1579 1835 2091 2347 %e A257499 . 427 939 1451 1963 2475 2987 3499 4011 4523 5035 %e A257499 . 171 1195 2219 3243 4267 5291 6315 7339 8363 9387 %e A257499 . 1707 3755 5803 7851 9899 11947 13995 16043 18091 20139 %t A257499 (* Array: *) %t A257499 Grid[Table[(1 + 2^n*(6*k - 3 + 2*(-1)^n))/3, {n, 10}, {k, 10}]] %t A257499 (* Array antidiagonals flattened: *) %t A257499 Flatten[Table[(1 + 2^(n - k + 1)*(6*k - 3 + 2*(-1)^(n - k + 1)))/3, {n, 10}, {k, n}]] %Y A257499 Cf. A007814, A075677, A254067, A257480. %Y A257499 Cf. A255138 (column 1). %K A257499 nonn,tabl %O A257499 1,2 %A A257499 _L. Edson Jeffery_, Apr 27 2015