cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257526 Decimal expansion of e*Pi*erfc(1).

Original entry on oeis.org

1, 3, 4, 3, 2, 9, 3, 4, 2, 1, 6, 4, 6, 7, 3, 5, 1, 7, 0, 4, 3, 7, 1, 2, 3, 5, 9, 4, 4, 1, 0, 5, 8, 9, 7, 7, 8, 3, 2, 2, 8, 2, 9, 5, 6, 7, 1, 3, 0, 0, 3, 6, 8, 7, 2, 0, 5, 1, 9, 5, 5, 5, 6, 4, 5, 5, 3, 0, 2, 5, 8, 2, 7, 9, 6, 9, 7, 2, 7, 7, 5, 7, 9, 8, 4, 1, 3, 3, 5, 0, 0, 7, 6, 5, 4, 8, 8, 0, 0, 2, 5, 4, 9
Offset: 1

Views

Author

Jean-François Alcover, Apr 28 2015

Keywords

Examples

			1.343293421646735170437123594410589778322829567130036872051955564553...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[E*Pi*Erfc[1], 10, 103] // First
  • PARI
    exp(1)*Pi*erfc(1) \\ Charles R Greathouse IV, Apr 18 2016

Formula

Equals Integral_{-infinity..infinity} exp(-x^2)/(1+x^2) dx.
Also equals J(0) where J(c) = Integral_{-infinity..infinity} exp(-(x-c)^2)/(1+x^2) dx = (1/2)*Pi*e*(erfc[1-c*i]*e^(-2*c*i) + erfc[1+c*i]*e^(2*c*i)), where the integrand comes from a shifted normal PDF times a Cauchy PDF.
Equals 2 * Integral_{x=0..Pi/2} exp(-tan(x)^2) dx. - Amiram Eldar, Aug 07 2020