This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257527 #23 Dec 16 2017 17:59:54 %S A257527 313,389,1283,1399,1669,1787,2087,2143,2713,2801,3469,4091,4787,4789, %T A257527 4903,4933,5867,6037,6869,8111,8627,9419,9439,11701,11971,12043,13229, %U A257527 13693,13829,14591,16139,16229,17027,17749,17791,20611,20773 %N A257527 Prime numbers that have a triangular Voronoi cell in the Voronoi diagram of the Ulam prime spiral. %H A257527 Vardan Semerjyan, <a href="http://smallsats.org/2014/01/03/voronoi-diagram-of-prime-spiral/">Voronoi diagram of prime spiral</a> %o A257527 (MATLAB) %o A257527 sz = 201; % Size of the N x N square matrix %o A257527 mat = spiral(sz); % MATLAB Function %o A257527 k = 1; %o A257527 for i =1:sz %o A257527 for j=1:sz %o A257527 if isprime(mat(i,j)) % Check if the number is prime %o A257527 % saving indices of primes %o A257527 y(k) = i; x(k) = j; %o A257527 k = k+1; %o A257527 end %o A257527 end %o A257527 end %o A257527 xy = [x',y']; %o A257527 [v,c] = voronoin(xy); % Returns Voronoi vertices V and %o A257527 % the Voronoi cells C %o A257527 k = 1; %o A257527 for i = 1:length(c) %o A257527 szv = size(v(c{i},1)); %o A257527 polyN(i) = szv(1); %o A257527 if polyN(i) == 3 %o A257527 A(k) = mat(y(i),x(i)); %o A257527 k = k+1; %o A257527 end %o A257527 end %o A257527 % Print terms %o A257527 A = sort(A); %o A257527 fprintf('A = '); %o A257527 fprintf('%i, ',A); %o A257527 % Note that the last terms might not be correct. They correspond to the points on the outer %o A257527 % edges of the spiral which might be altered when considering a larger spiral. %o A257527 % Use larger spiral to get more terms %Y A257527 Cf. A000040, A257528, A257529. %K A257527 nonn %O A257527 1,1 %A A257527 _Vardan Semerjyan_, Apr 28 2015