This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257528 #16 Dec 16 2017 18:00:21 %S A257528 23,31,47,59,71,73,79,131,139,167,173,181,229,239,251,269,277,331,353, %T A257528 359,367,421,439,449,467,479,499,587,617,661,701,709,739,751,761,797, %U A257528 887,941,967,1021,1063,1129,1151,1171,1181,1229,1279,1291,1303,1321,1427,1429,1451,1481 %N A257528 Prime numbers that have a quadrilateral Voronoi cell in the Voronoi diagram of the Ulam prime spiral. %H A257528 Vardan Semerjyan, <a href="http://smallsats.org/2014/01/03/voronoi-diagram-of-prime-spiral/">Voronoi diagram of prime spiral</a> %o A257528 (MATLAB) %o A257528 sz = 201; % Size of the N x N square matrix %o A257528 mat = spiral(sz); % MATLAB Function %o A257528 k = 1; %o A257528 for i =1:sz %o A257528 for j=1:sz %o A257528 if isprime(mat(i,j)) % Check if the number is prime %o A257528 % saving indices of primes %o A257528 y(k) = i; x(k) = j; %o A257528 k = k+1; %o A257528 end %o A257528 end %o A257528 end %o A257528 xy = [x',y']; %o A257528 [v,c] = voronoin(xy); % Returns Voronoi vertices V and %o A257528 % the Voronoi cells C %o A257528 k = 1; %o A257528 for i = 1:length(c) %o A257528 szv = size(v(c{i},1)); %o A257528 polyN(i) = szv(1); %o A257528 if polyN(i) == 4 %o A257528 A(k) = mat(y(i),x(i)); %o A257528 k = k+1; %o A257528 end %o A257528 end %o A257528 % Print terms %o A257528 A = sort(A); %o A257528 fprintf('A = '); %o A257528 fprintf('%i, ',A); %o A257528 % Note that the last terms might not be correct. %o A257528 % They correspond to the points on the outer edges of the spiral which might be altered when considering a larger spiral. %o A257528 % Use a larger spiral to get more terms. %Y A257528 Cf. A000040, A257528, A257527. %K A257528 nonn %O A257528 1,1 %A A257528 _Vardan Semerjyan_, Apr 28 2015