This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257529 #18 Dec 16 2017 18:00:58 %S A257529 2,3,11,13,17,19,29,37,53,83,97,101,103,107,109,113,137,149,151,163, %T A257529 191,197,211,223,227,241,257,271,281,293,307,337,347,373,401,419,431, %U A257529 433,461,521,523,541,563,569,571,577,593,619,653,659,673 %N A257529 Prime numbers that have a pentagonal Voronoi cell in the Voronoi diagram of the Ulam prime spiral. %H A257529 Vardan Semerjyan, <a href="http://smallsats.org/2014/01/03/voronoi-diagram-of-prime-spiral/">Voronoi diagram of prime spiral</a> %o A257529 (MATLAB) %o A257529 sz = 201; % Size of the N x N square matrix %o A257529 mat = spiral(sz); % MATLAB Function %o A257529 k = 1; %o A257529 for i =1:sz %o A257529 for j=1:sz %o A257529 if isprime(mat(i,j)) % Check if the number is prime %o A257529 % saving indices of primes %o A257529 y(k) = i; x(k) = j; %o A257529 k = k+1; %o A257529 end %o A257529 end %o A257529 end %o A257529 xy = [x',y']; %o A257529 [v,c] = voronoin(xy); % Returns Voronoi vertices V and %o A257529 % the Voronoi cells C %o A257529 k = 1; %o A257529 for i = 1:length(c) %o A257529 szv = size(v(c{i},1)); %o A257529 polyN(i) = szv(1); %o A257529 if polyN(i) == 5 %o A257529 A(k) = mat(y(i),x(i)); %o A257529 k = k+1; %o A257529 end %o A257529 end %o A257529 % Print terms %o A257529 A = sort(A); %o A257529 fprintf('A = '); %o A257529 fprintf('%i, ',A); %o A257529 % Note that the last terms might not be correct. %o A257529 % They correspond to the points on the outer edges of the spiral which might be altered when considering a larger spiral. %o A257529 % Use larger spiral to get more terms %Y A257529 Cf. A257527, A257528, A000040, A077800. %K A257529 nonn %O A257529 1,1 %A A257529 _Vardan Semerjyan_, Apr 28 2015