cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257530 Decimal expansion of sqrt(Pi/sqrt(e)).

This page as a plain text file.
%I A257530 #12 Feb 16 2025 08:33:25
%S A257530 1,3,8,0,3,8,8,4,4,7,0,4,3,1,4,2,9,7,4,7,7,3,4,1,5,2,4,6,7,2,5,5,9,1,
%T A257530 2,7,4,2,7,0,7,7,2,4,6,5,5,6,2,2,1,0,7,9,8,4,5,0,2,4,6,8,5,0,7,1,5,7,
%U A257530 4,8,2,6,5,6,1,0,4,6,6,3,9,1,8,9,2,3,8,0,6,4,3,4,3,3,8,4,1,2,5,6,0,5,6,1,2
%N A257530 Decimal expansion of sqrt(Pi/sqrt(e)).
%H A257530 Stanislav Sykora, <a href="/A257530/b257530.txt">Table of n, a(n) for n = 1..2000</a>
%H A257530 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CosineIntegral.html">Cosine Integral</a>, Eq.20
%F A257530 Equals integral[-inf..+inf](exp(-x^2)*cos(k*x)) = sqrt(Pi/exp(k^2/2)), for k = 1.
%e A257530 1.38038844704314297477341524672559127427077246556221079845024685...
%t A257530 RealDigits[N[Sqrt[Pi/Sqrt@ E], 120]] (* _Michael De Vlieger_, Apr 30 2015 *)
%o A257530 (PARI) a = sqrt(Pi/sqrt(exp(1)))
%Y A257530 Cf. A000796, A001113, A096414.
%K A257530 nonn,cons
%O A257530 1,2
%A A257530 _Stanislav Sykora_, Apr 28 2015