cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257537 Number of subtrees with at least one edge of the rooted tree with Matula-Goebel number n.

This page as a plain text file.
%I A257537 #24 Nov 13 2024 23:02:37
%S A257537 0,1,3,3,6,6,7,7,10,10,10,12,12,12,15,15,12,19,15,18,18,15,19,24,21,
%T A257537 19,29,22,18,27,15,31,21,18,25,37,24,24,27,34,19,33,22,25,40,29,27,48,
%U A257537 30,37,25,33,31,56,28,42,34,27,18,51,37,21,49,63,36,36,24,30,40,45,34,73,33,37,54,42,33,48,25
%N A257537 Number of subtrees with at least one edge of the rooted tree with Matula-Goebel number n.
%C A257537 The Matula number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula  number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula numbers of the m branches of T.
%C A257537 a(n) = A184161(n) - A061775(n).
%C A257537 The subtree polynomial of a tree T is the bivariate generating polynomial of the subtrees of T with at least one edge with respect to the number of edges (marked by x) and number of pendant vertices (marked by y). See the Martin et. al, reference. For example, the subtree polynomial of the tree \/ is 2xy^2 + x^2 y^2.
%C A257537 If G(n;x,y) is the subtree polynomial of the rooted tree with Matula number n, then, obviously, a(n) = G(n;1,1). The Maple program uses this circuitous way for finding a(n). With the given Maple program, the command G(n) yields the subtree polynomial of the rooted tree having Matula number n (this is my "secret" reason to include this sequence).
%H A257537 Emeric Deutsch, <a href="http://arxiv.org/abs/1111.4288">Rooted tree statistics from Matula numbers</a>, arXiv:1111.4288 [math.CO], 2011.
%H A257537 Emeric Deutsch, <a href="http://dx.doi.org/10.1016/j.dam.2012.05.012">Rooted tree statistics from Matula numbers</a>, Discrete Appl. Math., 160, 2012, 2314-2322.
%H A257537 F. Goebel, <a href="http://dx.doi.org/10.1016/0095-8956(80)90049-0">On a 1-1-correspondence between rooted trees and natural numbers</a>, J. Combin. Theory, B 29 (1980), 141-143.
%H A257537 I. Gutman and A. Ivic, <a href="http://dx.doi.org/10.1016/0012-365X(95)00182-V">On Matula numbers</a>, Discrete Math., 150, 1996, 131-142.
%H A257537 I. Gutman and Yeong-Nan Yeh, <a href="http://www.emis.de/journals/PIMB/067/3.html">Deducing properties of trees from their Matula numbers</a>, Publ. Inst. Math., 53 (67), 1993, 17-22.
%H A257537 D. W. Matula, <a href="http://www.jstor.org/stable/2027327">A natural rooted tree enumeration by prime factorization</a>, SIAM Rev. 10 (1968) 273.
%H A257537 <a href="/index/Mat#matula">Index entries for sequences related to Matula-Goebel numbers</a>
%e A257537 a(4)=3 because the rooted tree with Matula number 4 is \/ with subtrees \ ,  / , and \/ .
%p A257537 with(numtheory): g := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc; if n = 1 then 0 elif bigomega(n) = 1 then expand(x*y^2+x*g(pi(n))+x*y*h(pi(n))) else expand(g(r(n))+g(s(n))) end if end proc: h := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc; s := proc (n) options operator, arrow; n/r(n) end proc: if n = 1 then 0 elif bigomega(n) = 1 then 0 else expand(h(r(n))+h(s(n))+g(r(n))*g(s(n))/y^2+g(r(n))*h(s(n))/y+h(r(n))*g(s(n))/y+h(r(n))*h(s(n))) end if end proc: G := proc (n) local r, s: r := proc (n) options operator, arrow; op(1, factorset(n)) end proc: s := proc (n) options operator, arrow; n/r(n) end proc: if n = 1 then 0 elif bigomega(n) = 1 then g(n)+G(pi(n)) else expand(G(r(n))+G(s(n))+h(n)-h(r(n))-h(s(n))) end if end proc: seq(subs({x = 1, y = 1}, G(i)), i = 1 .. 150);
%t A257537 r[n_] := FactorInteger[n][[1, 1]];
%t A257537 s[n_] := n/r[n];
%t A257537 g[n_] := If[n == 1, 0, If[PrimeOmega[n] == 1, Expand[x*y^2 + x*g[PrimePi[n]] + x*y*h[PrimePi[n]]], Expand[g[r[n]] + g[s[n]]]]];
%t A257537 h[n_] := If[n == 1, 0, If[PrimeOmega[n] == 1, 0, Expand[h[r[n]] + h[s[n]] + g[r[n]]*g[s[n]]/y^2 + g[r[n]]*h[s[n]]/y + h[r[n]]*g[s[n]]/y + h[r[n]]*h[s[n]]]]];
%t A257537 G[n_] := G[n] = If[n == 1, 0, If[PrimeOmega[n] == 1, g[n] + G[PrimePi[n]], Expand[G[r[n]] + G[s[n]] + h[n] - h[r[n]] - h[s[n]]]]];
%t A257537 a[n_] := G[n] /. {x -> 1, y -> 1};
%t A257537 Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Jun 18 2024, after Maple code *)
%Y A257537 Cf. A184161, A061775
%K A257537 nonn
%O A257537 1,3
%A A257537 _Emeric Deutsch_, Apr 28 2015