A257563 Triangle read by rows, coefficients T(n,k) of polynomials related to the Bell polynomials, for n>=0 and 0<=k<=n.
1, 0, 2, 0, 1, 3, 0, 1, 5, 4, 0, 1, 10, 14, 5, 0, 1, 19, 48, 30, 6, 0, 1, 36, 149, 158, 55, 7, 0, 1, 69, 445, 727, 413, 91, 8, 0, 1, 134, 1308, 3126, 2638, 924, 140, 9, 0, 1, 263, 3822, 12932, 15396, 7818, 1848, 204, 10, 0, 1, 520, 11159, 52278, 84920, 59382, 19998, 3396, 285, 11
Offset: 0
Examples
The triangle starts: [1] [0, 2] [0, 1, 3] [0, 1, 5, 4] [0, 1, 10, 14, 5] [0, 1, 19, 48, 30, 6] [0, 1, 36, 149, 158, 55, 7]
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 135.
Links
- Peter Luschny, The Bell Transform
Programs
-
Maple
T_row := proc(n) local T; T := proc(n,k) option remember; if k = 0 then x^n else add(binomial(n-1,j-1)*T(n-j,k-1)*x, j=0..n-k+1) fi end; PolynomialTools:-CoefficientList(add(T(n,k),k=0..n), x) end: seq(print(T_row(n)), n=0..6);
-
Mathematica
T[n_, k_] := T[n, k] = If[k==0, x^n, Sum[Binomial[n-1, j-1]*T[n-j, k-1]*x, {j, 0, n-k+1}]]; row[n_] := CoefficientList[Sum[T[n, k], {k, 0, n}], x]; Table[row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jan 20 2016, adapted from Maple *)
-
Sage
def partial_bell_polynomial(n,k): X = var(['x_'+str(i) for i in (0..n+1)]) @cached_function def T(n,k): if k==0: return X[0]^n return sum(binomial(n-1,j-1)*X[j]*T(n-j,k-1) for j in (0..n-k+1)) return T(n,k).expand() def univariate_bell_polynomial(n): # for comparison only p = sum(partial_bell_polynomial(n,k) for k in (0..n)).subs(x_0=0) q = p({p.variables()[i]:x for i in range(len(p.variables()))}) R = PolynomialRing(QQ,'x') return R(q) def x0_based_univariate_bell_polynomial(n): p = sum(partial_bell_polynomial(n,k) for k in (0..n)) q = p({p.variables()[i]:x for i in range(len(p.variables()))}) R = PolynomialRing(QQ,'x') return R(q) for n in (0..6): x0_based_univariate_bell_polynomial(n).list()
Formula
Row sums are Bell(n)*(2-0^n) = A186021(n).
Comments