A257564 Irregular triangle read by rows: T(n,k) = r(n+k)+r(n-k) with r(n) = (n-(n mod 2))/2 for n>=0 and -n<=k<=n.
0, 1, 0, 1, 2, 1, 2, 1, 2, 3, 2, 3, 2, 3, 2, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 8, 7, 8, 7, 8, 7, 8, 7, 8, 7, 8, 7, 8, 7, 8, 7, 8
Offset: 0
Examples
Triangle starts: 0; 1, 0, 1; 2, 1, 2, 1, 2; 3, 2, 3, 2, 3, 2, 3; 4, 3, 4, 3, 4, 3, 4, 3, 4; 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5;
Programs
-
Maple
r := n -> (n-(n mod 2))/2: T := (n,k) -> r(n+k) + r(n-k): seq(print(seq(T(n,k), k=-n..n)), n=0..6);
-
Sage
for n in (0..6): [(n+k)//2 + (n-k)//2 for k in (-n..n)]
Formula
Sum_{k=-n..n} T(n,k) = 2*n^2 = A001105(n).
Comments