cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257574 Continued square root map applied to the sequence of positive even numbers, (2, 4, 6, 8, ...).

This page as a plain text file.
%I A257574 #31 May 04 2018 18:04:10
%S A257574 2,1,5,8,4,7,6,8,7,2,3,1,1,0,3,9,7,6,5,6,5,5,8,5,3,4,7,9,8,0,7,0,2,5,
%T A257574 2,4,1,6,6,9,6,9,4,4,4,0,3,5,4,2,8,6,6,7,0,3,7,5,5,0,9,6,3,4,2,1,9,4,
%U A257574 6,2,4,0,7,4,5,4,9,7,7,1,1,8,5,9,9,8,0
%N A257574 Continued square root map applied to the sequence of positive even numbers, (2, 4, 6, 8, ...).
%C A257574 The continued square root or CSR map applied to a sequence b = (b(1), b(2), b(3), ...) is the number CSR(b) := sqrt(b(1)+sqrt(b(2)+sqrt(b(3)+sqrt(b(4)+...)))).
%C A257574 Taking out a factor sqrt(2), one gets CSR(2, 4, 6, 8, ...) = sqrt(2) CSR(1, 1, 3/8, 1/32, ...) < A002193*A001622 = (sqrt(5)+1)/sqrt(2). - _M. F. Hasler_, May 01 2018
%H A257574 Hiroaki Yamanouchi, <a href="/A257574/b257574.txt">Table of n, a(n) for n = 1..400</a>
%H A257574 A. Herschfeld, <a href="http://www.jstor.org/stable/2301294">On Infinite Radicals</a>, Amer. Math. Monthly, 42 (1935), 419-429.
%H A257574 Herman P. Robinson, <a href="/A257574/a257574.pdf">The CSR Function</a>, Popular Computing (Calabasas, CA), Vol. 4 (No. 35, Feb 1976), pages PC35-3 to PC35-4. Annotated and scanned copy.
%e A257574 sqrt(2 + sqrt(4 + sqrt(6 + sqrt(8 + ...)))) = 2.1584768723110397656558534...
%o A257574 (PARI) (CSR(v,s)=forstep(i=#v,1,-1,s=sqrt(v[i]+s));s); t=0;for(N=5,oo,(t==t=Str(CSR([1..2*N]*2)))&&break;print(2*N": "t)) \\ Allows to see the convergence, which is reached when length of vector ~ precision [given as number of digits]. Using Str() to avoid infinite loop when internal representation is "fluctuating". - _M. F. Hasler_, May 04 2018
%Y A257574 Cf. A072449, A257575..A257581, A105817, A099879, A001622, A105546.
%K A257574 nonn,cons
%O A257574 1,1
%A A257574 _N. J. A. Sloane_, May 02 2015
%E A257574 a(27)-a(87) from _Hiroaki Yamanouchi_, May 03 2015
%E A257574 Edited by _M. F. Hasler_, May 01 2018