cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257582 Lexicographically largest increasing sequence of primes for which the continued square root map (see A257574) produces Pi.

This page as a plain text file.
%I A257582 #26 May 05 2018 17:53:52
%S A257582 5,17,37,53,131,181,263,317,859,887,1637,2837,3413,5861,6491,10531,
%T A257582 13399,14083,14563,21433,29717,30529,31663,31771,32069,32587,36559,
%U A257582 36809,39359,39461,45319,46933,49801,52391,52579,52889,55871,57493,59107,59539,64187,64633,75377,77491,82351,86587
%N A257582 Lexicographically largest increasing sequence of primes for which the continued square root map (see A257574) produces Pi.
%C A257582 The continued square root map applied to a sequence (x,y,z,...) is CSR(x,y,z,...) = sqrt(x + sqrt(y + sqrt(z + ...))); this is well defined if the logarithm of the terms is O(2^n).
%H A257582 Chai Wah Wu, <a href="/A257582/b257582.txt">Table of n, a(n) for n = 1..1000</a>
%H A257582 Popular Computing (Calabasas, CA), <a href="/A257352/a257352.pdf">The CSR Function</a>, Vol. 4 (No. 34, Jan 1976), pages PC34-10 to PC34-11. Annotated and scanned copy.
%H A257582 Herman P. Robinson, <a href="/A257574/a257574.pdf">The CSR Function</a>, Popular Computing (Calabasas, CA), Vol. 4 (No. 35, Feb 1976), pages PC35-3 to PC35-4. Annotated and scanned copy.
%o A257582 (PARI) (CSR(v, s)=forstep(i=#v, 1, -1, s=sqrt(v[i]+s)); s); a=[5]; for(n=1, 50, print1(a[#a]", "); for(i=primepi(a[#a])+1, oo, CSR(concat(a, vector(9, j, prime(i+j))))>=Pi && (a=concat(a, prime(i))) && break)) \\ The default precision of 38 digits yields correct terms only below 30000. To compute larger values correctly, realprecision must be increased. - _M. F. Hasler_, May 03 2018
%Y A257582 Cf. A000796 (Pi), A257764 (analog for e = 2.71828... instead of Pi), A257809 (analog for delta = 4.6692...), A257574.
%K A257582 nonn
%O A257582 1,1
%A A257582 _N. J. A. Sloane_, May 03 2015
%E A257582 a(15)-a(46) from _Chai Wah Wu_, May 06 2015
%E A257582 Edited by _M. F. Hasler_, May 03 2018