This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257605 #12 Mar 25 2022 15:51:40 %S A257605 1,3,12,68,606,9438,271154,14272266,1350900204,226478780848, %T A257605 67039275113982,34862320055916606,31905434621918041764, %U A257605 51191148619374796495296,144350180842362122992451022,712487785268333349746955065478,6171550949441004942637166827656834 %N A257605 Expansion of g.f.: exp( Sum_{n>=1} A251661(n)*x^n/n ) where A251661(n) = Sum_{k=0..n} C(n, k) * (2^k + 3^k)^(n-k). %H A257605 G. C. Greubel, <a href="/A257605/b257605.txt">Table of n, a(n) for n = 0..90</a> %F A257605 G.f.: exp( Sum_{n>=1} A251661(n)*x^n/n ). %e A257605 G.f.: A(x) = 1 + 3*x + 12*x^2 + 68*x^3 + 606*x^4 + 9438*x^5 + 271154*x^6 + ... %e A257605 The logarithm of g.f. A(x) begins: %e A257605 log(A(x)) = 3*x + 15*x^2/2 + 123*x^3/3 + 1671*x^4/4 + 37863*x^5/5 + ... + A251661(n)*x^n/n + ... %e A257605 which may be written as: %e A257605 log(A(x)) = (2^1 + 1) * x + %e A257605 (2^2 + 2*(2 + 3)^1 + 1) * x^2/2 + %e A257605 (2^3 + 3*(2 + 3)^2 + 3*(2^2 + 3^2)^1 + 1) * x^3/3 + %e A257605 (2^4 + 4*(2 + 3)^3 + 6*(2^2 + 3^2)^2 + 4*(2^3 + 3^3)^1 + 1) * x^4/4 + %e A257605 (2^5 + 5*(2 + 3)^4 + 10*(2^2 + 3^2)^3 + 10*(2^3 + 3^3)^2 + 5*(2^4 + 3^4)^1 + 1) * x^5/5 + ... %t A257605 A251661[n_]:= A251661[n]= Sum[Binomial[n,k]*(2^k +3^k)^(n-k), {k,0,n}]; %t A257605 With[{m = 50}, CoefficientList[Series[Exp[Sum[A251661[j]*x^j/j, {j, 2*m}]], {x, 0, m}], x]] (* _G. C. Greubel_, Mar 24 2022 *) %o A257605 (PARI) {A251661(n) = sum(k=0, n, binomial(n, k) * (2^k + 3^k)^(n-k) )} %o A257605 {a(n) = local(A = exp( sum(m=1,n,A251661(m)*x^m/m) +x*O(x^n)) );polcoeff(A,n)} %o A257605 for(n=0, 20, print1(a(n), ", ")) %o A257605 (Sage) %o A257605 m=40 %o A257605 @CachedFunction %o A257605 def A251661(n): return sum( binomial(n, k)*(2^k + 3^k)^(n-k) for k in (0..n) ) %o A257605 def p(x): return exp( sum(A251661(j)*x^j/j for j in (1..2*m)) ) %o A257605 def A257605(n): return ( p(x) ).series(x, n+1).list()[n] %o A257605 [A257605(n) for n in (0..m)] # _G. C. Greubel_, Mar 24 2022 %Y A257605 Cf. A251661. %K A257605 nonn %O A257605 0,2 %A A257605 _Paul D. Hanna_, May 02 2015