This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257606 #31 Mar 25 2022 02:18:24 %S A257606 1,4,4,16,40,16,64,296,296,64,256,1928,3552,1928,256,1024,11688,34808, %T A257606 34808,11688,1024,4096,67656,302352,487312,302352,67656,4096,16384, %U A257606 379240,2423016,5830000,5830000,2423016,379240,16384,65536,2076424,18330496,62617144,93280000,62617144,18330496,2076424,65536 %N A257606 Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 4. %H A257606 G. C. Greubel, <a href="/A257606/b257606.txt">Rows n = 0..50 of the triangle, flattened</a> %F A257606 T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 4. %F A257606 Sum_{k=0..n} T(n, k) = A049388(n). %F A257606 T(n,0) = T(n,n) = 4^n. - _Georg Fischer_, Oct 02 2021 %F A257606 From _G. C. Greubel_, Mar 24 2022: (Start) %F A257606 T(n, k) = (a*k + b)*T(n-1, k) + (a*(n-k) + b)*T(n-1, k-1), with T(n, 0) = 1, a = 1, and b = 4. %F A257606 T(n, n-k) = T(n, k). %F A257606 T(n, 1) = 8*5^n - 4^n*(8+n). %F A257606 T(n, 2) = 2*((56 +15*n +n^2)*4^(n-1) - 4*(8+n)*5^n + 3*6^(n+1)). (End) %e A257606 Triangle begins as: %e A257606 1; %e A257606 4, 4; %e A257606 16, 40, 16; %e A257606 64, 296, 296, 64; %e A257606 256, 1928, 3552, 1928, 256; %e A257606 1024, 11688, 34808, 34808, 11688, 1024; %e A257606 4096, 67656, 302352, 487312, 302352, 67656, 4096; %e A257606 16384, 379240, 2423016, 5830000, 5830000, 2423016, 379240, 16384; %t A257606 T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]]; %t A257606 Table[T[n,k,1,4], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Mar 24 2022 *) %o A257606 (Sage) %o A257606 def T(n,k,a,b): # A257606 %o A257606 if (k<0 or k>n): return 0 %o A257606 elif (n==0): return 1 %o A257606 else: return (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b) %o A257606 flatten([[T(n,k,1,4) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Mar 24 2022 %Y A257606 Cf. A008292, A049388 (row sums), A256890, A257180, A257607. %Y A257606 Cf. A257613, A257622. %Y A257606 Similar sequences listed in A256890. %K A257606 nonn,tabl %O A257606 0,2 %A A257606 _Dale Gerdemann_, May 03 2015 %E A257606 a(3) corrected by _Georg Fischer_, Oct 02 2021