This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257610 #22 Mar 21 2022 03:06:04 %S A257610 1,2,2,4,20,4,8,132,132,8,16,748,2112,748,16,32,3964,25124,25124,3964, %T A257610 32,64,20364,256488,552728,256488,20364,64,128,103100,2398092,9670840, %U A257610 9670840,2398092,103100,128,256,518444,21246736,147146804,270783520,147146804,21246736,518444,256 %N A257610 Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 3*x + 2. %H A257610 G. C. Greubel, <a href="/A257610/b257610.txt">Rows n = 0..50 of the triangle, flattened</a> %F A257610 T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 3*x + 2. %F A257610 Sum_{k=0..n} T(n, k) = A007559(n). %F A257610 T(n, k) = (a*k + b)*T(n-1, k) + (a*(n-k) + b)*T(n-1, k-1), with T(n, 0) = 1, a = 3, and b = 2. - _G. C. Greubel_, Mar 20 2022 %e A257610 Triangle begins as: %e A257610 1; %e A257610 2, 2; %e A257610 4, 20, 4; %e A257610 8, 132, 132, 8; %e A257610 16, 748, 2112, 748, 16; %e A257610 32, 3964, 25124, 25124, 3964, 32; %e A257610 64, 20364, 256488, 552728, 256488, 20364, 64; %e A257610 128, 103100, 2398092, 9670840, 9670840, 2398092, 103100, 128; %e A257610 256, 518444, 21246736, 147146804, 270783520, 147146804, 21246736, 518444, 256; %t A257610 T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]]; %t A257610 Table[T[n,k,3,2], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Mar 20 2022 *) %o A257610 (Sage) %o A257610 def T(n,k,a,b): # A257610 %o A257610 if (k<0 or k>n): return 0 %o A257610 elif (n==0): return 1 %o A257610 else: return (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b) %o A257610 flatten([[T(n,k,3,2) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Mar 20 2022 %Y A257610 Cf. A007559 (row sums), A038208, A142458, A257620, A257622, A257624, A257626. %Y A257610 Cf. A256890, A257609, A257610, A257612, A257614, A257616, A257617, A257618, A257619. %Y A257610 See similar sequences listed in A256890. %K A257610 nonn,tabl %O A257610 0,2 %A A257610 _Dale Gerdemann_, May 03 2015