This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257611 #20 Mar 01 2022 01:23:34 %S A257611 1,3,3,9,30,9,27,213,213,27,81,1308,2982,1308,81,243,7431,32646,32646, %T A257611 7431,243,729,40314,310263,587628,310263,40314,729,2187,212505, %U A257611 2695923,8701545,8701545,2695923,212505,2187,6561,1099704,22059036,113360904,191433990,113360904,22059036,1099704,6561 %N A257611 Triangle, read by rows, T(n,k) = t(n-k, k) where t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1) and f(n) = 2*n + 3. %H A257611 G. C. Greubel, <a href="/A257611/b257611.txt">Rows n = 0..50 of the triangle, flattened</a> %F A257611 T(n, k) = t(n-k, k), where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(n) = 2*n + 3. %F A257611 Sum_{k=0..n} T(n, k) = A051578(n). %F A257611 From _G. C. Greubel_, Feb 28 2022: (Start) %F A257611 t(k, n) = t(n, k). %F A257611 T(n, n-k) = T(n, k). %F A257611 t(0, n) = T(n, 0) = A000244(n). (End) %e A257611 Array t(n,k) begins as: %e A257611 1, 3, 9, 27, 81, 243, ...; %e A257611 3, 30, 213, 1308, 7431, 40314, ...; %e A257611 9, 213, 2982, 32646, 310263, 2695923, ...; %e A257611 27, 1308, 32646, 587628, 8701545, 113360904, ...; %e A257611 81, 7431, 310263, 8701545, 191433990, 3579465642, ...; %e A257611 243, 40314, 2695923, 113360904, 3579465642, 93066106692, ...; %e A257611 729, 212505, 22059036, 1351133676, 59641127202, 2104476295026, ...; %e A257611 Triangle T(n,k) begins as: %e A257611 1; %e A257611 3, 3; %e A257611 9, 30, 9; %e A257611 27, 213, 213, 27; %e A257611 81, 1308, 2982, 1308, 81; %e A257611 243, 7431, 32646, 32646, 7431, 243; %e A257611 729, 40314, 310263, 587628, 310263, 40314, 729; %e A257611 2187, 212505, 2695923, 8701545, 8701545, 2695923, 212505, 2187; %t A257611 t[n_, k_, p_, q_]:= t[n, k, p, q] = If[n<0 || k<0, 0, If[n==0 && k==0, 1, (p*k+q)*t[n-1,k,p,q] + (p*n+q)*t[n,k-1,p,q]]]; %t A257611 T[n_, k_, p_, q_]= t[n-k, k, p, q]; %t A257611 Table[T[n,k,2,3], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Feb 28 2022 *) %o A257611 (PARI) f(x) = 2*x + 3; %o A257611 T(n, k) = t(n-k, k); %o A257611 t(n, m) = if (!n && !m, 1, if (n < 0 || m < 0, 0, f(m)*t(n-1,m) + f(n)*t(n,m-1))); %o A257611 tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ");); print();); \\ _Michel Marcus_, May 06 2015 %o A257611 (Sage) %o A257611 @CachedFunction %o A257611 def t(n,k,p,q): %o A257611 if (n<0 or k<0): return 0 %o A257611 elif (n==0 and k==0): return 1 %o A257611 else: return (p*k+q)*t(n-1,k,p,q) + (p*n+q)*t(n,k-1,p,q) %o A257611 def A257611(n,k): return t(n-k,k,2,3) %o A257611 flatten([[A257611(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Feb 28 2022 %Y A257611 Cf. A000244, A051578 (row sums), A060187, A257609, A257613, A257615. %Y A257611 Cf. A038221, A257180, A257611, A257620, A257621, A257623, A257625, A257627. %Y A257611 Similar sequences listed in A256890. %K A257611 nonn,tabl %O A257611 0,2 %A A257611 _Dale Gerdemann_, May 06 2015