This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257613 #25 Mar 21 2022 03:05:30 %S A257613 1,4,4,16,48,16,64,416,416,64,256,3136,6656,3136,256,1024,21888,84608, %T A257613 84608,21888,1024,4096,145664,939520,1692160,939520,145664,4096,16384, %U A257613 939520,9555456,28195840,28195840,9555456,939520,16384,65536,5932032,91475968,415734784,676700160,415734784,91475968,5932032,65536 %N A257613 Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 2*x + 4. %H A257613 G. C. Greubel, <a href="/A257613/b257613.txt">Rows n = 0..50 of the triangle, flattened</a> %F A257613 T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 2*x + 4. %F A257613 Sum_{k=0..n} T(n, k) = A051580(n). %F A257613 T(n, k) = (a*k + b)*T(n-1, k) + (a*(n-k) + b)*T(n-1, k-1), with T(n, 0) = 1, a = 2, and b = 4. - _G. C. Greubel_, Mar 20 2022 %e A257613 Triangle begins as: %e A257613 1; %e A257613 4, 4; %e A257613 16, 48, 16; %e A257613 64, 416, 416, 64; %e A257613 256, 3136, 6656, 3136, 256; %e A257613 1024, 21888, 84608, 84608, 21888, 1024; %e A257613 4096, 145664, 939520, 1692160, 939520, 145664, 4096; %e A257613 16384, 939520, 9555456, 28195840, 28195840, 9555456, 939520, 16384; %t A257613 T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]]; %t A257613 Table[T[n,k,2,4], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Mar 20 2022 *) %o A257613 (PARI) f(x) = 2*x + 4; %o A257613 T(n, k) = t(n-k, k); %o A257613 t(n, m) = if (!n && !m, 1, if (n < 0 || m < 0, 0, f(m)*t(n-1,m) + f(n)*t(n,m-1))); %o A257613 tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ");); print();); \\ _Michel Marcus_, May 06 2015 %o A257613 (Sage) %o A257613 def T(n,k,a,b): # A257613 %o A257613 if (k<0 or k>n): return 0 %o A257613 elif (n==0): return 1 %o A257613 else: return (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b) %o A257613 flatten([[T(n,k,2,4) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Mar 20 2022 %Y A257613 Cf. A051580 (row sums), A060187, A257609, A257611, A257615. %Y A257613 Cf. A257606, A257622. %Y A257613 Similar sequences listed in A256890. %K A257613 nonn,tabl %O A257613 0,2 %A A257613 _Dale Gerdemann_, May 06 2015