This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257615 #14 Mar 22 2022 03:11:31 %S A257615 1,5,5,25,70,25,125,715,715,125,625,6380,12870,6380,625,3125,52785, %T A257615 186010,186010,52785,3125,15625,416370,2360295,4092220,2360295,416370, %U A257615 15625,78125,3180215,27488205,75698255,75698255,27488205,3180215,78125 %N A257615 Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 2*x + 5. %H A257615 G. C. Greubel, <a href="/A257615/b257615.txt">Rows n = 0..50 of the triangle, flattened</a> %F A257615 T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 2*x + 5. %F A257615 Sum_{k=0..n} T(n, k) = A051582(n). %F A257615 From _G. C. Greubel_, Mar 21 2022: (Start) %F A257615 T(n, k) = (a*k + b)*T(n-1, k) + (a*(n-k) + b)*T(n-1, k-1), with T(n, 0) = 1, a = 2, and b = 5. %F A257615 T(n, n-k) = T(n, k). %F A257615 T(n, 0) = A000351(n). %F A257615 T(n, 1) = 5*7^n - 5^n*(n+5). (End) %e A257615 Triangle begins as: %e A257615 1; %e A257615 5, 5; %e A257615 25, 70, 25; %e A257615 125, 715, 715, 125; %e A257615 625, 6380, 12870, 6380, 625; %e A257615 3125, 52785, 186010, 186010, 52785, 3125; %e A257615 15625, 416370, 2360295, 4092220, 2360295, 416370, 15625; %e A257615 78125, 3180215, 27488205, 75698255, 75698255, 27488205, 3180215, 78125; %t A257615 T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]]; %t A257615 Table[T[n,k,2,5], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Mar 21 2022 *) %o A257615 (Sage) %o A257615 def T(n,k,a,b): # A257610 %o A257615 if (k<0 or k>n): return 0 %o A257615 elif (n==0): return 1 %o A257615 else: return (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b) %o A257615 flatten([[T(n,k,2,5) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Mar 21 2022 %Y A257615 Cf. A000351, A051582 (row sums), A060187, A257609, A257611, A257613. %Y A257615 Cf. A257607, A257624. %Y A257615 Similar sequences listed in A256890. %K A257615 nonn,tabl %O A257615 0,2 %A A257615 _Dale Gerdemann_, May 09 2015