This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257618 #22 Mar 24 2022 03:31:15 %S A257618 1,2,2,4,40,4,8,472,472,8,16,4928,16992,4928,16,32,49824,433984, %T A257618 433984,49824,32,64,499584,9505728,22567168,9505728,499584,64,128, %U A257618 4999040,192085632,909941120,909941120,192085632,4999040,128 %N A257618 Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 8*x + 2. %H A257618 G. C. Greubel, <a href="/A257618/b257618.txt">Rows n = 0..50 of the triangle, flattened</a> %F A257618 T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 8*x + 2. %F A257618 Sum_{k=0..n} T(n, k) = A144828(n). %F A257618 From _G. C. Greubel_, Mar 24 2022: (Start) %F A257618 T(n, k) = (a*k + b)*T(n-1, k) + (a*(n-k) + b)*T(n-1, k-1), with T(n, 0) = 1, a = 8, and b = 2. %F A257618 T(n, n-k) = T(n, k). %F A257618 T(n, 0) = A000079(n). %F A257618 T(n, 1) = 2^(n-1)*(5^n - 2*n - 1). %F A257618 T(n, 2) = 2^(n-3)*(3^(2*n+1) -2*(2*n+1)*5^n -1 +4*n^2). (End) %e A257618 Triangle begins as: %e A257618 1; %e A257618 2, 2; %e A257618 4, 40, 4; %e A257618 8, 472, 472, 8; %e A257618 16, 4928, 16992, 4928, 16; %e A257618 32, 49824, 433984, 433984, 49824, 32; %e A257618 64, 499584, 9505728, 22567168, 9505728, 499584, 64; %e A257618 128, 4999040, 192085632, 909941120, 909941120, 192085632, 4999040, 128; %t A257618 T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]]; %t A257618 Table[T[n,k,8,2], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Mar 24 2022 *) %o A257618 (Sage) %o A257618 def T(n,k,a,b): # A257618 %o A257618 if (k<0 or k>n): return 0 %o A257618 elif (n==0): return 1 %o A257618 else: return (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b) %o A257618 flatten([[T(n,k,8,2) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Mar 24 2022 %Y A257618 Cf. A000079, A144828 (row sums), A167884. %Y A257618 Cf. A038208, A256890, A257609, A257610, A257612, A257614, A257616, A257617, A257619. %Y A257618 Similar sequences listed in A256890. %K A257618 nonn,tabl %O A257618 0,2 %A A257618 _Dale Gerdemann_, May 09 2015