This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257619 #13 Mar 24 2022 03:30:50 %S A257619 1,2,2,4,44,4,8,564,564,8,16,6436,22560,6436,16,32,71404,637844, %T A257619 637844,71404,32,64,786948,15470232,36994952,15470232,786948,64,128, %U A257619 8660012,346391196,1660722424,1660722424,346391196,8660012,128 %N A257619 Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 9*x + 2. %H A257619 G. C. Greubel, <a href="/A257619/b257619.txt">Rows n = 0..50 of the triangle, flattened</a> %F A257619 T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 9*x + 2. %F A257619 Sum_{k=0..n} T(n, k) = A144829(n). %F A257619 From _G. C. Greubel_, Mar 24 2022: (Start) %F A257619 T(n, k) = (a*k + b)*T(n-1, k) + (a*(n-k) + b)*T(n-1, k-1), with T(n, 0) = 1, a = 9, and b = 2. %F A257619 T(n, n-k) = T(n, k). %F A257619 T(n, 0) = A000079(n). %F A257619 T(n, 1) = (1/9)*(4*11^n - 2^n*(9*n + 4)). %F A257619 T(n, 2) = (1/81)*(26*20^n - 4*(4+9*n)*11^n - 2^(n-1)*(20 + 9*n - 81*n^2)). (End) %e A257619 Triangle begins as: %e A257619 1; %e A257619 2, 2; %e A257619 4, 44, 4; %e A257619 8, 564, 564, 8; %e A257619 16, 6436, 22560, 6436, 16; %e A257619 32, 71404, 637844, 637844, 71404, 32; %e A257619 64, 786948, 15470232, 36994952, 15470232, 786948, 64; %e A257619 128, 8660012, 346391196, 1660722424, 1660722424, 346391196, 8660012, 128; %t A257619 T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]]; %t A257619 Table[T[n,k,9,2], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Mar 24 2022 *) %o A257619 (PARI) f(x) = 9*x + 2; %o A257619 t(n, m) = if ((n<0) || (m<0), 0, if ((n==0) && (m==0), 1, f(m)*t(n-1,m) + f(n)*t(n,m-1))); %o A257619 tabl(nn) = {for (n=0, nn, for (k=0, n, print1(t(n-k, k), ", "); ); print(); ); } \\ _Michel Marcus_, May 23 2015 %o A257619 (Sage) %o A257619 def T(n,k,a,b): # A257619 %o A257619 if (k<0 or k>n): return 0 %o A257619 elif (n==0): return 1 %o A257619 else: return (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b) %o A257619 flatten([[T(n,k,9,2) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Mar 24 2022 %Y A257619 Cf. A000079, A144829 (row sums), A257608. %Y A257619 Cf. A038208, A256890, A257609, A257610, A257612, A257614, A257616, A257617, A257618. %Y A257619 Similar sequences listed in A256890. %K A257619 nonn,tabl %O A257619 0,2 %A A257619 _Dale Gerdemann_, May 09 2015