This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257623 #18 Feb 27 2022 02:06:50 %S A257623 1,3,3,9,48,9,27,501,501,27,81,4494,13026,4494,81,243,37815,250230, %T A257623 250230,37815,243,729,309324,4122735,9008280,4122735,309324,729,2187, %U A257623 2498649,62256627,256971945,256971945,62256627,2498649,2187 %N A257623 Triangle read by rows: T(n,k) = t(n-k, k), where t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1) and f(n) = 5*n + 3. %H A257623 G. C. Greubel, <a href="/A257623/b257623.txt">Rows n = 0..50 of the triangle, flattened</a> %F A257623 T(n,k) = t(n-k, k) where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(n) = 5*n + 3. %F A257623 Sum_{k=0..n} T(n, k) = A008548(n). %F A257623 From _G. C. Greubel_, Feb 27 2022: (Start) %F A257623 t(k, n) = t(n, k). %F A257623 T(n, n-k) = T(n, k). %F A257623 t(0, n) = T(n, 0) = A000244(n). (End) %e A257623 Array, t(n,k), begins as: %e A257623 1, 3, 9, 27, 81, ... A000244; %e A257623 3, 48, 501, 4494, 37815, ...; %e A257623 9, 501, 13026, 250230, 4122735, ...; %e A257623 27, 4494, 250230, 9008280, 256971945, ...; %e A257623 81, 37815, 4122735, 256971945, 11820709470, ...; %e A257623 243, 309324, 62256627, 6368680566, 450199373658, ...; %e A257623 729, 2498649, 891791568, 144065371932, 15108742867890, ...; %e A257623 Triangle, T(n,k), begins as: %e A257623 1; %e A257623 3, 3; %e A257623 9, 48, 9; %e A257623 27, 501, 501, 27; %e A257623 81, 4494, 13026, 4494, 81; %e A257623 243, 37815, 250230, 250230, 37815, 243; %e A257623 729, 309324, 4122735, 9008280, 4122735, 309324, 729; %e A257623 2187, 2498649, 62256627, 256971945, 256971945, 62256627, 2498649, 2187; %t A257623 t[n_, k_, p_, q_]:= t[n, k, p, q]= If[n<0 || k<0, 0, If[n==0 && k==0, 1, (p*k+ q)*t[n-1,k,p,q] + (p*n+q)*t[n,k-1,p,q]]]; %t A257623 T[n_, k_, p_, q_]= t[n-k,k,p,q]; %t A257623 Table[T[n,k,5,3], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Feb 27 2022 *) %o A257623 (Sage) %o A257623 @CachedFunction %o A257623 def t(n,k,p,q): %o A257623 if (n<0 or k<0): return 0 %o A257623 elif (n==0 and k==0): return 1 %o A257623 else: return (p*k+q)*t(n-1,k,p,q) + (p*n+q)*t(n,k-1,p,q) %o A257623 def A257623(n,k): return t(n-k,k,5,3) %o A257623 flatten([[A257623(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Feb 27 2022 %Y A257623 Cf. A000244, A008548, A142460, A257614. %Y A257623 Cf. A038221, A257180, A257611, A257620, A257621, A257625, A257627. %Y A257623 Similar sequences listed in A256890. %K A257623 nonn,tabl %O A257623 0,2 %A A257623 _Dale Gerdemann_, May 10 2015