This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257625 #13 Mar 01 2022 05:32:42 %S A257625 1,3,3,9,54,9,27,621,621,27,81,6156,18630,6156,81,243,57591,408726, %T A257625 408726,57591,243,729,526338,7685847,17166492,7685847,526338,729,2187, %U A257625 4765473,132656859,568014201,568014201,132656859,4765473,2187 %N A257625 Triangle read by rows: T(n, k) = t(n-k, k), where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(n) = 6*n + 3. %H A257625 G. C. Greubel, <a href="/A257625/b257625.txt">Rows n = 0..50 of the triangle, flattened</a> %F A257625 T(n, k) = t(n-k, k), where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(n) = 6*n + 3. %F A257625 Sum_{k=0..n} T(n, k) = A047058(n). %F A257625 From _G. C. Greubel_, Mar 01 2022: (Start) %F A257625 t(k, n) = t(n, k). %F A257625 T(n, n-k) = T(n, k). %F A257625 t(0, n) = T(n, 0) = A000244(n). (End) %e A257625 Array t(n,k) begins as: %e A257625 1, 3, 9, 27, 81, ...; %e A257625 3, 54, 621, 6156, 57591, ...; %e A257625 9, 621, 18630, 408726, 7685847, ...; %e A257625 27, 6156, 408726, 17166492, 568014201, ...; %e A257625 81, 57591, 7685847, 568014201, 30672766854, ...; %e A257625 243, 526338, 132656859, 16305974568, 1366261865802, ...; %e A257625 729, 4765473, 2175706332, 427278012876, 53552912878818, ...; %e A257625 Triangle T(n,k) begins as: %e A257625 1; %e A257625 3, 3; %e A257625 9, 54, 9; %e A257625 27, 621, 621, 27; %e A257625 81, 6156, 18630, 6156, 81; %e A257625 243, 57591, 408726, 408726, 57591, 243; %e A257625 729, 526338, 7685847, 17166492, 7685847, 526338, 729; %e A257625 2187, 4765473, 132656859, 568014201, 568014201, 132656859, 4765473, 2187; %t A257625 t[n_, k_, p_, q_]:= t[n, k, p, q] = If[n<0 || k<0, 0, If[n==0 && k==0, 1, (p*k+q)*t[n-1,k,p,q] + (p*n+q)*t[n,k-1,p,q]]]; %t A257625 T[n_, k_, p_, q_]= t[n-k, k, p, q]; %t A257625 Table[T[n,k,6,3], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Mar 01 2022 *) %o A257625 (Sage) %o A257625 @CachedFunction %o A257625 def t(n,k,p,q): %o A257625 if (n<0 or k<0): return 0 %o A257625 elif (n==0 and k==0): return 1 %o A257625 else: return (p*k+q)*t(n-1,k,p,q) + (p*n+q)*t(n,k-1,p,q) %o A257625 def A257625(n,k): return t(n-k,k,6,3) %o A257625 flatten([[A257625(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Mar 01 2022 %Y A257625 Cf. A047058 (row sums), A142461, A257616. %Y A257625 Cf. A038221, A257180, A257611, A257620, A257621, A257623, A257625, A257627. %Y A257625 See similar sequences listed in A256890. %K A257625 nonn,tabl %O A257625 0,2 %A A257625 _Dale Gerdemann_, May 10 2015