This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257626 #15 Mar 21 2022 02:14:32 %S A257626 1,6,6,36,108,36,216,1404,1404,216,1296,15876,33696,15876,1296,7776, %T A257626 166212,642492,642492,166212,7776,46656,1659204,10701720,19274760, %U A257626 10701720,1659204,46656,279936,16052580,163263924,481752360,481752360,163263924,16052580,279936 %N A257626 Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 3*x + 6. %H A257626 G. C. Greubel, <a href="/A257626/b257626.txt">Rows n = 0..50 of the triangle, flattened</a> %F A257626 T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 3*x + 6. %F A257626 Sum_{k=0..n} T(n, k) = A051609(n). %F A257626 T(n, k) = (a*k + b)*T(n-1, k) + (a*(n-k) + b)*T(n-1, k-1), with T(n, 0) = 1, a = 3, and b = 6. - _G. C. Greubel_, Mar 20 2022 %e A257626 Triangle begins as: %e A257626 1; %e A257626 6, 6; %e A257626 36, 108, 36; %e A257626 216, 1404, 1404, 216; %e A257626 1296, 15876, 33696, 15876, 1296; %e A257626 7776, 166212, 642492, 642492, 166212, 7776; %e A257626 46656, 1659204, 10701720, 19274760, 10701720, 1659204, 46656; %e A257626 279936, 16052580, 163263924, 481752360, 481752360, 163263924, 16052580, 279936; %t A257626 T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]]; %t A257626 Table[T[n,k,3,6], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Mar 20 2022 *) %o A257626 (Sage) %o A257626 def T(n,k,a,b): # A257626 %o A257626 if (k<0 or k>n): return 0 %o A257626 elif (n==0): return 1 %o A257626 else: return (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b) %o A257626 flatten([[T(n,k,3,6) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Mar 20 2022 %Y A257626 Cf. A051609 (row sums), A142458, A257610, A257620, A257622, A257624. %Y A257626 See similar sequences listed in A256890. %K A257626 nonn,tabl %O A257626 0,2 %A A257626 _Dale Gerdemann_, May 10 2015