This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257627 #12 Feb 22 2022 03:41:09 %S A257627 1,3,3,9,60,9,27,753,753,27,81,8178,25602,8178,81,243,84291,631506, %T A257627 631506,84291,243,729,852144,13348623,30312288,13348623,852144,729, %U A257627 2187,8554245,259308063,1141302225,1141302225,259308063,8554245,2187 %N A257627 Triangle, read by rows, T(n,k) = t(n-k, k) where t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1) and f(x) = 7*x + 3. %H A257627 G. C. Greubel, <a href="/A257627/b257627.txt">Rows n = 0..50 of the triangle, flattened</a> %F A257627 T(n, k) = t(n-k, k), where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 7*x + 3. %F A257627 Sum_{k=0..n} T(n, k) = A049209(n). %F A257627 From _G. C. Greubel_, Feb 22 2022: (Start) %F A257627 t(k, n) = t(n, k). %F A257627 T(n, n-k) = T(n, k). %F A257627 t(0, n) = T(n, 0) = A000244(n). (End) %e A257627 Array t(n, k) begins as: %e A257627 1, 3, 9, 27, 81, ... A000244; %e A257627 3, 60, 753, 8178, 84291, ...; %e A257627 9, 753, 25602, 631506, 13348623, ...; %e A257627 27, 8178, 631506, 30312288, 1141302225, ...; %e A257627 81, 84291, 13348623, 1141302225, 70760737950, ...; %e A257627 243, 852144, 259308063, 37244959794, 3608891348622, ...; %e A257627 729, 8554245, 4793178096, 1109572049376, 161806374029202, ...; %e A257627 Triangle, T(n, k) begins as: %e A257627 1; %e A257627 3, 3; %e A257627 9, 60, 9; %e A257627 27, 753, 753, 27; %e A257627 81, 8178, 25602, 8178, 81; %e A257627 243, 84291, 631506, 631506, 84291, 243; %e A257627 729, 852144, 13348623, 30312288, 13348623, 852144, 729; %e A257627 2187, 8554245, 259308063, 1141302225, 1141302225, 259308063, 8554245, 2187; %t A257627 f[n_]:= 7*n+3; %t A257627 t[n_, k_]:= t[n,k]= If[n<0 || k<0, 0, If[n==0 && k==0, 1, f[k]*t[n-1,k] +f[n]*t[n,k-1]]]; %t A257627 T[n_, k_]= t[n-k, k]; %t A257627 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Feb 22 2022 *) %o A257627 (Sage) %o A257627 def f(n): return 7*n+3 %o A257627 @CachedFunction %o A257627 def t(n,k): %o A257627 if (n<0 or k<0): return 0 %o A257627 elif (n==0 and k==0): return 1 %o A257627 else: return f(k)*t(n-1, k) + f(n)*t(n, k-1) %o A257627 def A257627(n,k): return t(n-k,k) %o A257627 flatten([[A257627(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Feb 22 2022 %Y A257627 Cf. A000244, A038221, A049209 (row sums), A142462. %Y A257627 Cf. A257180, A257611, A257617, A257620, A257621, A257623, A257625. %Y A257627 See similar sequences listed in A256890. %K A257627 nonn,tabl %O A257627 0,2 %A A257627 _Dale Gerdemann_, May 10 2015