This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257630 #23 Oct 15 2021 06:05:47 %S A257630 10,15,21,28,36,45,78,91,171,300,595,990,1711,5565,6555,66066,333336 %N A257630 Near-repdigit triangular numbers. %C A257630 A near-repdigit is a number having all digits but one equal. No other near-repdigit triangular number is known up to 10^15. %C A257630 No more terms less than 10^1000. It is likely there are no more terms. - _Chai Wah Wu_, Mar 25 2020 %t A257630 nrepQ[n_] := Module[{dg = Select[DigitCount[n], # > 0 &]},Length[dg] == 2 && Min[dg] == 1 && Max[dg] > 0]; Select[ %t A257630 Table[n*(n + 1)/2, {n, 10000}], nrepQ] %o A257630 (Python) %o A257630 from sympy import integer_nthroot %o A257630 def istri(n): return integer_nthroot(8*n+1, 2)[1] %o A257630 def near_repdigits(digits): %o A257630 s = set() %o A257630 for d1 in "0123456789": %o A257630 for d2 in set("0123456789") - {d1}: %o A257630 for loc in range(1, digits+1): %o A257630 nrd = d1*(digits-loc) + d2 + d1*(loc-1) %o A257630 if nrd[0] != "0": s.add(int(nrd)) %o A257630 return sorted(s) %o A257630 def afind(maxdigits): %o A257630 for digits in range(2, maxdigits+1): %o A257630 for t in near_repdigits(digits): %o A257630 if istri(t): print(t, end=", ") %o A257630 afind(100) # _Michael S. Branicky_, Oct 15 2021 %Y A257630 Cf. A000217, A010785, A062691. %K A257630 base,nonn,more %O A257630 1,1 %A A257630 _Shyam Sunder Gupta_, Jul 12 2015