A257634 a(n) = (A001163(n)/A001164(n))*3*(2*n)!^2/n!!.
3, 1, 3, -1390, -139895, 2064875400, 999912530925, -128585633463727440, -176876516433064573125, 109242473594498195269718400, 333170810414553853376721961875, -698025623281503752808511373154720000, -4073023833462008382211035330291042675375
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..30
- Eric Weisstein's World of Mathematics, Stirling's Series.
Programs
-
Maple
h := proc(k) option remember; local j; `if`(k=0,1, (h(k-1)/k-add((h(k-j)*h(j))/(j+1),j=1..k-1))/(1+1/(k+1))) end: g := n -> doublefactorial(2*n-1)*(2*n)!^2/doublefactorial(n): seq(3*h(2*n)*g(n), n=0..12); # Peter Luschny, Nov 05 2015
-
Mathematica
Table[3 (2n)!^2/n!! (6n+1)!!/4^n Sum[(-1)^m 2^k StirlingS2[2n+k+m, m]/((2n+2k+1) (2n+k+m)! (2n-k)! (k-m)!), {k, 0, 2n}, {m, 0, k}], {n, 0, 12}]
Comments