This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257635 #23 Mar 21 2022 11:46:34 %S A257635 1,2,1,12,7,1,120,74,15,1,1680,1066,251,26,1,30240,19524,5000,635,40, %T A257635 1,665280,434568,117454,16815,1345,57,1,17297280,11393808,3197348, %U A257635 495544,45815,2527,77,1,518918400,343976400,99236556,16275700,1659889,107800,4354,100,1 %N A257635 Triangle with n-th row polynomial equal to Product_{k = 1..n} (x + n + k). %C A257635 The row polynomials are a Sheffer sequence. For the associated polynomial sequence of binomial type see A038455. %H A257635 R. Sprugnoli, <a href="https://web.archive.org/web/20170401103408/http://www.dsi.unifi.it/~resp/Handbook.pdf">An Introduction to Mathematical Methods in Combinatorics, Section 5.6</a> CreateSpace Independent Publishing Platform 2006, ISBN-13: 978-1502925244. %H A257635 Wikipedia, <a href="https://en.wikipedia.org/wiki/Sheffer_sequence">Sheffer sequence</a> %F A257635 E.g.f.: A(x,t) = B(t)*C(t)^x = 1 + (2 + x)*t + (3 + x)*(4 + x)*t^2/2! + (4 + x)*(5 + x)*(6 + x)*t^3/3! + ..., where B(t) = 1/sqrt(1 - 4*t) is the o.g.f. for A000984 and C(t) = (1 - sqrt(1 - 4*t))/(2*t) is the o.g.f. for A000108. %F A257635 n-th row polynomial: n!*binomial(2*n + x,n). %F A257635 T(n, k) = (-1)^k*n!*[x^k] hypergeom([-n, -x + n], [-n], 1). - _Peter Luschny_, Nov 27 2021 %F A257635 T(n, k) = [x^k] Gamma(2*n + x + 1) / Gamma(n + x + 1). - _Peter Luschny_, Mar 21 2022 %e A257635 Triangle begins: %e A257635 [0] 1; %e A257635 [1] 2, 1; %e A257635 [2] 12, 7, 1; %e A257635 [3] 120, 74, 15, 1; %e A257635 [4] 1680, 1066, 251, 26, 1; %e A257635 [5] 30240, 19524, 5000, 635, 40, 1; %e A257635 [6] 665280, 434568, 117454, 16815, 1345, 57, 1; %e A257635 ... %p A257635 seq(seq(coeff(product(n + x + k, k = 1 .. n), x, i), i = 0..n), n = 0..8); %p A257635 # Alternative: %p A257635 p := n -> n!*hypergeom([-n, -x + n], [-n], 1): %p A257635 seq(seq((-1)^k*coeff(simplify(p(n)), x, k), k=0..n), n=0..6); # _Peter Luschny_, Nov 27 2021 %t A257635 p[n_, x_] := FunctionExpand[Gamma[2*n + x + 1] / Gamma[n + x + 1]]; %t A257635 Table[CoefficientList[p[n, x], x], {n,0,8}] // Flatten (* _Peter Luschny_, Mar 21 2022 *) %Y A257635 Cf. A001813 (column 0), A005449 (first subdiagonal), A098118 (column 1). %Y A257635 Cf. A006963 (row sums), A000407 (alternating row sum). %Y A257635 Cf. A054649, A000108, A000984, A038455, A092932. %K A257635 nonn,tabl,easy %O A257635 0,2 %A A257635 _Peter Bala_, Nov 05 2015