A257637 Maximal number of edges in an n-vertex triangle-free graph with maximal degree at most 4.
0, 1, 2, 4, 6, 9, 12, 16, 17, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120
Offset: 1
Links
- Jörgen Backelin, Table of n, a(n) for n = 1..100
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
PARI
a(n)=if(n>9, 2*n, if(n<9, n^2\4, 17)) \\ Charles R Greathouse IV, Jan 06 2016
Formula
a(n) = floor(n^2/4) = A002620(n), if 1 <= n <= 8.
a(9) = 17.
a(n) = 2*n = A005843(n), if n >= 10.
From Chai Wah Wu, Feb 03 2021: (Start)
a(n) = 2*a(n-1) - a(n-2) for n > 11.
G.f.: x*(-x^10 + 2*x^9 - 3*x^8 + x^7 + x^5 + x^3 + x)/(x - 1)^2. (End)
Comments