A257638 Numbers n such that n-25, n-1, n+1 and n+25 are consecutive primes.
232962, 311712, 431832, 435948, 473352, 501342, 525492, 596118, 635388, 665922, 699792, 754182, 842448, 1013502, 1017648, 1036002, 1156848, 1255452, 1284738, 1306692, 1479912, 1516128, 1551732, 1560708, 1595928, 1659348, 1690572, 1745112
Offset: 1
Keywords
Examples
232962 is the average of the four consecutive primes 232937, 232961, 232963, 232987. 311712 is the average of the four consecutive primes 311687, 311711, 311713, 311737.
Links
- Karl V. Keller, Jr., Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Twin Primes
Programs
-
Python
from sympy import isprime,prevprime,nextprime for i in range(0,1000001,6): if isprime(i-1) and isprime(i+1) and prevprime(i-1) == i-25 and nextprime(i+1) == i+25: print (i,end=', ')
Comments