cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257648 Numbers m such that both p=2*m^2+11 and q=2*p^2+11 are prime.

This page as a plain text file.
%I A257648 #16 Jun 16 2022 17:58:27
%S A257648 1,2,3,4,6,7,8,13,20,31,52,54,62,65,70,75,137,151,153,163,212,224,281,
%T A257648 284,329,384,419,424,445,455,489,505,524,581,593,642,646,680,706,723,
%U A257648 738,746,775,787,795,830,841,843,918,953,970,973,984
%N A257648 Numbers m such that both p=2*m^2+11 and q=2*p^2+11 are prime.
%C A257648 Numbers m such that both m and p=2*m^2+11 are terms in A092968. Also, both p and q are terms in A050265.
%H A257648 Harvey P. Dale, <a href="/A257648/b257648.txt">Table of n, a(n) for n = 1..1000</a>
%e A257648 n=1: m=1=A092968(2) and p=13=A092968(12),
%e A257648 n=8: m=13=A092968(12) and p=349=A092968(127),
%e A257648 n=9: m=20=A092968(12) and p=811=A092968(251).
%t A257648 Reap[Do[If[PrimeQ[p=2*k^2+11]&&PrimeQ[2*(p)^2+11],Sow[k]],{k,10^3}]][[2,1]]
%t A257648 bprQ[n_]:=Module[{p=2n^2+11},AllTrue[{p,2p^2+11},PrimeQ]]; Select[Range[ 1000],bprQ] (* _Harvey P. Dale_, Jun 16 2022 *)
%Y A257648 Cf. A050265, A092968.
%K A257648 nonn
%O A257648 1,2
%A A257648 _Zak Seidov_, Jul 25 2015