cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257649 Squares that are the concatenation of two integers (without leading zeros) the sum of which is also a square.

This page as a plain text file.
%I A257649 #44 Jun 08 2024 15:44:16
%S A257649 36,81,169,196,324,361,576,729,841,1156,1521,1681,1764,2809,3249,3481,
%T A257649 4356,5625,6084,6241,6724,7396,7569,7744,7921,8281,9216,12321,12544,
%U A257649 12769,12996,13689,15129,16384,17424,18769,19881,24964,25600,31684,32041,34596,36864,38416,39601
%N A257649 Squares that are the concatenation of two integers (without leading zeros) the sum of which is also a square.
%C A257649 Squares that can be split up in more than one way, e.g., 729 (72 + 9 and 7 + 29), appear only once.
%C A257649 The number of such squares is infinite, since 39...960...01 (the numbers of the digits 9 and 0 is equal) can be split up into 3 and 9...960..01 with 3 + 9...960...01 = (100...0-2)^2 and 39...960...01 = (2*100...0 - 1)^2.
%C A257649 From _Robert G. Wilson v_, Aug 06 2015: (Start)
%C A257649 Number of terms < 10^k: 0, 2, 9, 27, 66, 149, 370, 910, 2164, 5325, 12916, 29448, ..., .
%C A257649 Terms which are members of A257649 in more than one way: 729, 7569, 15129, 56169, 86436, 123201, ..., .
%C A257649 Terms which are members of A257649 in more than two way: 881377344, 3784833441, 39999600001, 54444755556, 71111288889, 89999400001, 159999200001, 321111488889, 751111688889, ..., .
%C A257649 Least term which is a member of A257649 in k ways: 36, 729, 881377344, 399999960000001, ..., . (End)
%H A257649 Robert G. Wilson v, <a href="/A257649/b257649.txt">Table of n, a(n) for n = 1..10000</a> (first 909 terms from Reiner Moewald)
%e A257649 36 = 6^2 and 3 + 6 = 9 = 3^2.
%t A257649 f[n_] := Block[{a, b, c, k = 1, idn = IntegerDigits@ n, lng, lst = {}}, lng = Length@ idn; While[k < lng, a = FromDigits[ Take[idn, {1, k}]]; b = FromDigits[ Take[idn, {k + 1, lng}]]; c = a*10^(lng - k) + b; If[b > 0 && Floor[1 + Log10@ b] == lng - k && IntegerQ@ Sqrt[a + b], AppendTo[lst, c]]; k++]; Length@ lst]; k = 1; lst = {}; While[k < 201, If[ f[k^2] > 0, AppendTo[lst, k^2]]; k++]; lst (* _Robert G. Wilson v_, Aug 06 2015 *)
%t A257649 ctiQ[n_]:=AnyTrue[Total/@Select[Table[FromDigits/@TakeDrop[IntegerDigits[n],d],{d,IntegerLength[ n]-1}],IntegerLength[#[[1]]]+IntegerLength[#[[2]]] ==IntegerLength[ n]&],IntegerQ[ Sqrt[#]]&]; Select[Range[200]^2,ctiQ] (* _Harvey P. Dale_, Jun 04 2023 *)
%o A257649 (Python)
%o A257649 import math
%o A257649 print("Start")
%o A257649 list =[]
%o A257649 for i in range(1,1000):
%o A257649    a = i*i
%o A257649    b = str(a)
%o A257649    l = len(b)
%o A257649    for j in range(1, l):
%o A257649       a_1 = b[:j]
%o A257649       a_2 = b[j:]
%o A257649       c = int(a_1)+int(a_2)
%o A257649       sqrt_c = int(math.sqrt(int(c)))
%o A257649       if (sqrt_c * sqrt_c == c) and (int(a_2[:1]) > 0):
%o A257649          if not a in list:
%o A257649             list.append(a)
%o A257649 print(list)
%o A257649 print("End")
%Y A257649 Subsequence of A052041.
%K A257649 nonn,base
%O A257649 1,1
%A A257649 _Reiner Moewald_, Jul 25 2015