A265740 a(1)=1; a(n+1) is the smallest positive integer not yet used such that all the digits of a(n) and a(n+1) are present in the decimal expansion (including any leading and trailing zeros) of a(n)/a(n+1).
1, 6, 13, 10, 14, 17, 7, 8, 19, 23, 21, 29, 34, 31, 3, 38, 28, 46, 47, 35, 39, 49, 43, 51, 42, 41, 48, 53, 26, 12, 57, 58, 59, 2, 61, 24, 68, 11, 52, 63, 22, 69, 62, 71, 56, 65, 76, 81, 44, 67, 64, 83, 85, 78, 77, 79, 72, 70, 80, 87, 84, 86, 89, 9, 91, 92, 73
Offset: 1
Examples
1/6 = 0.1666... (1 and 6 are visible on the right-hand side) 6/13 = 0.461538461538... (6, 1 and 3 are visible) 13/10 = 1.30 (trailing zeros are included) 10/14 = 0.7142857142... (1, 0 and 4) 14/17 = 0.8235294117... (1, 4 and 7) 17/7 = 2.4285714285... (1 and 7) 7/8 = 0.875 (7 and 8) ...
Links
- Lars Blomberg, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[n_] := Block[{a = {1}, k}, Do[k = If[MissingQ@ #, Max@ a, #] &@ SelectFirst[Range@ Max@ a, ! MemberQ[a, #] &]; While[Or[! AllTrue[Join[IntegerDigits@ a[[i - 1]], IntegerDigits@ k], MemberQ[Union@ Flatten@ Prepend[First@ #, If[Last@ # <= 0, 0, Nothing]] &@ If[Depth@ First@ # < 3, Insert[#, 0, {1, 1}], #] &@ RealDigits[a[[i - 1]]/k], #] &], MemberQ[a, k]], k++]; AppendTo[a, k], {i, 2, n}]; a]; f@ 67 (* Version 10.2 *) f[n_] := Block[{a = {1}, k}, Do[k = 1; While[Or[If[# == 1, False, True] &[Times @@ Boole[MemberQ[Union@ Flatten@ Prepend[First@ #, If[Last@ # <= 0, 0]] &@ If[Depth@ First@ # < 3, Insert[#, 0, {1, 1}], #] &@ RealDigits[a[[i - 1]]/k], #] & /@ Join[IntegerDigits@ a[[i - 1]], IntegerDigits@ k]]], MemberQ[a, k]], k++]; AppendTo[a, k], {i, 2, n}]; a]; f@ 67 (* Michael De Vlieger, Dec 16 2015, Version 6 *)
Extensions
Corrected values for n>=58 by Lars Blomberg, Dec 16 2015
Comments