This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257675 #19 Aug 23 2021 05:54:43 %S A257675 1,3,21,174,1509,13473,122580,1129999,10518477,98644395,930607321, %T A257675 8821717743,83960385396,801783097911,7678690148647,73721697254874, %U A257675 709323064431597,6837868454315828,66028546945097793,638555320797561440,6183787002091288969,59957399899953193063 %N A257675 a(n) = A257673(2n,n). %H A257675 Alois P. Heinz, <a href="/A257675/b257675.txt">Table of n, a(n) for n = 0..500</a> %F A257675 a(n) = A257673(2n,n). %F A257675 a(n) ~ c * d^n / sqrt(n), where d = 9.93288639318036180192949205242384178223421389697248991016311001938239..., c = 0.31807008223273549425589833682845775837952038959... . - _Vaclav Kotesovec_, May 19 2015 %F A257675 a(n) = [x^(2*n)] (-1 + Product_{k>=1} 1 / (1 - x^k)^k)^n. - _Ilya Gutkovskiy_, Feb 13 2021 %p A257675 g:= proc(n) option remember; `if`(n=0, 1, add( %p A257675 g(n-j)*numtheory[sigma][2](j), j=1..n)/n) %p A257675 end: %p A257675 b:= proc(n, k) option remember; `if`(k<2, g(n+1), (q-> %p A257675 add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))) %p A257675 end: %p A257675 a:= n-> b(n$2): %p A257675 seq(a(n), n=0..22); %t A257675 g[n_] := g[n] = If[n == 0, 1, Sum[g[n - j]* %t A257675 DivisorSigma[2, j], {j, 1, n}]/n]; %t A257675 b[n_, k_] := b[n, k] = If[k < 2, g[n+1], With[{q = Quotient[k, 2]}, %t A257675 Sum[b[j, q] b[n - j, k - q], {j, 0, n}]]]; %t A257675 a[n_] := b[n, n]; %t A257675 Table[a[n], {n, 0, 22}] (* _Jean-François Alcover_, Aug 23 2021, after _Alois P. Heinz_ *) %Y A257675 Cf. A000219, A257673. %K A257675 nonn %O A257675 0,2 %A A257675 _Alois P. Heinz_, May 03 2015