This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257687 #32 Mar 13 2021 12:43:39 %S A257687 0,0,0,1,0,1,0,1,2,3,4,5,0,1,2,3,4,5,0,1,2,3,4,5,0,1,2,3,4,5,6,7,8,9, %T A257687 10,11,12,13,14,15,16,17,18,19,20,21,22,23,0,1,2,3,4,5,6,7,8,9,10,11, %U A257687 12,13,14,15,16,17,18,19,20,21,22,23,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,0 %N A257687 Discard the most significant digit from factorial base representation of n, then convert back to decimal: a(n) = n - A257686(n). %C A257687 A060130(n) gives the number of steps needed to reach zero, when starting iterating as a(k), a(a(k)), etc., from the starting value k = n. %H A257687 Antti Karttunen, <a href="/A257687/b257687.txt">Table of n, a(n) for n = 0..10080</a> %F A257687 a(n) = n - A257686(n). %e A257687 Factorial base representation (A007623) of 1 is "1", discarding the most significant digit leaves nothing, taken to be zero, thus a(1) = 0. %e A257687 Factorial base representation of 2 is "10", discarding the most significant digit leaves "0", thus a(2) = 0. %e A257687 Factorial base representation of 3 is "11", discarding the most significant digit leaves "1", thus a(3) = 1. %e A257687 Factorial base representation of 4 is "20", discarding the most significant digit leaves "0", thus a(4) = 0. %t A257687 f[n_] := Block[{m = p = 1}, While[p*(m + 1) <= n, p = p*m; m++]; Mod[n, p]]; Array[f, 101, 0] (* _Robert G. Wilson v_, Jul 21 2015 *) %o A257687 (Scheme) (define (A257687 n) (- n (A257686 n))) %o A257687 (Python) %o A257687 from sympy import factorial as f %o A257687 def a007623(n, p=2): return n if n<p else a007623(n//p, p+1)*10 + n%p %o A257687 def a(n): %o A257687 x=str(a007623(n))[1:][::-1] %o A257687 return sum(int(x[i])*f(i + 1) for i in range(len(x))) %o A257687 print([a(n) for n in range(201)]) # _Indranil Ghosh_, Jun 21 2017 %Y A257687 Cf. A007623, A257686. %Y A257687 Can be used (together with A099563) to define simple recurrences for sequences like A034968, A060130, A227153, A246359, A257511, A257679, A257680. %Y A257687 Cf. also A257684. %K A257687 nonn,base %O A257687 0,9 %A A257687 _Antti Karttunen_, May 04 2015