cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257687 Discard the most significant digit from factorial base representation of n, then convert back to decimal: a(n) = n - A257686(n).

This page as a plain text file.
%I A257687 #32 Mar 13 2021 12:43:39
%S A257687 0,0,0,1,0,1,0,1,2,3,4,5,0,1,2,3,4,5,0,1,2,3,4,5,0,1,2,3,4,5,6,7,8,9,
%T A257687 10,11,12,13,14,15,16,17,18,19,20,21,22,23,0,1,2,3,4,5,6,7,8,9,10,11,
%U A257687 12,13,14,15,16,17,18,19,20,21,22,23,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,0
%N A257687 Discard the most significant digit from factorial base representation of n, then convert back to decimal: a(n) = n - A257686(n).
%C A257687 A060130(n) gives the number of steps needed to reach zero, when starting iterating as a(k), a(a(k)), etc., from the starting value k = n.
%H A257687 Antti Karttunen, <a href="/A257687/b257687.txt">Table of n, a(n) for n = 0..10080</a>
%F A257687 a(n) = n - A257686(n).
%e A257687 Factorial base representation (A007623) of 1 is "1", discarding the most significant digit leaves nothing, taken to be zero, thus a(1) = 0.
%e A257687 Factorial base representation of 2 is "10", discarding the most significant digit leaves "0", thus a(2) = 0.
%e A257687 Factorial base representation of 3 is "11", discarding the most significant digit leaves "1", thus a(3) = 1.
%e A257687 Factorial base representation of 4 is "20", discarding the most significant digit leaves "0", thus a(4) = 0.
%t A257687 f[n_] := Block[{m = p = 1}, While[p*(m + 1) <= n, p = p*m; m++]; Mod[n, p]]; Array[f, 101, 0] (* _Robert G. Wilson v_, Jul 21 2015 *)
%o A257687 (Scheme) (define (A257687 n) (- n (A257686 n)))
%o A257687 (Python)
%o A257687 from sympy import factorial as f
%o A257687 def a007623(n, p=2): return n if n<p else a007623(n//p, p+1)*10 + n%p
%o A257687 def a(n):
%o A257687     x=str(a007623(n))[1:][::-1]
%o A257687     return sum(int(x[i])*f(i + 1) for i in range(len(x)))
%o A257687 print([a(n) for n in range(201)]) # _Indranil Ghosh_, Jun 21 2017
%Y A257687 Cf. A007623, A257686.
%Y A257687 Can be used (together with A099563) to define simple recurrences for sequences like A034968, A060130, A227153, A246359, A257511, A257679, A257680.
%Y A257687 Cf. also A257684.
%K A257687 nonn,base
%O A257687 0,9
%A A257687 _Antti Karttunen_, May 04 2015