cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257693 Numbers such that the smallest nonzero digit present (A257679) in their factorial base representation is 3.

This page as a plain text file.
%I A257693 #17 Feb 14 2024 01:05:21
%S A257693 18,72,90,114,360,378,432,450,456,474,498,552,570,594,618,672,690,714,
%T A257693 2160,2178,2232,2250,2256,2274,2520,2538,2592,2610,2616,2634,2640,
%U A257693 2658,2712,2730,2736,2754,2760,2778,2832,2850,2856,2874,2898,2952,2970,2994,3240,3258,3312,3330,3336,3354,3378,3432,3450,3474,3498,3552
%N A257693 Numbers such that the smallest nonzero digit present (A257679) in their factorial base representation is 3.
%C A257693 Numbers k for which A257679(k) = 3.
%H A257693 Antti Karttunen, <a href="/A257693/b257693.txt">Table of n, a(n) for n = 1..10000</a>
%H A257693 <a href="/index/Fa#facbase">Index entries for sequences related to factorial base representation</a>.
%e A257693 Factorial base representation (A007623) of 18 is "300" (as 18 = 3*3! + 0*2! + 0*1!), thus a(18) = 3.
%t A257693 q[n_] := Module[{k = n, m = 2, r, s = {}}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, AppendTo[s, r]; m++]; !ContainsAny[s, {1, 2}] && MemberQ[s, 3]]; Select[Range[3600], q] (* _Amiram Eldar_, Feb 14 2024 *)
%o A257693 (Scheme, with _Antti Karttunen_'s IntSeq-library)
%o A257693 (define A257693 (MATCHING-POS 1 1 (lambda (n) (= 3 (A257679 n)))))
%o A257693 (Python)
%o A257693 def A(n, p=2): return n if n<p else A(n//p, p+1)*10 + n%p
%o A257693 def a(n): return 0 if n==0 else min([int(i) for i in str(A(n)) if i !='0'])
%o A257693 print([n for n in range(1, 4001) if a(n)==3]) # _Indranil Ghosh_, Jun 19 2017
%Y A257693 Row 3 of A257503.
%Y A257693 Cf. A007623, A257679, A256450, A257692.
%Y A257693 Cf. also A257263.
%K A257693 nonn,base
%O A257693 1,1
%A A257693 _Antti Karttunen_, May 04 2015